On Compressive Sensing of Sparse Covariance Matrices Using Deterministic Sensing Matrices

Alihan Kaplan1 Volker Pohl1 Dae Gwan Lee2

1Institute of Theoretical Inform. Technology
Technical University of Munich
80333 München, Germany

2Faculty of Mathematics and Geography
Catholic University of Eichstätt-Ingolstadt
85071 Eichstätt, Germany
Overview

1. Motivation: Covariance matrix sketching

2. Some Simulations

3. Statistical Restricted Isometry property (StRIP)

4. Probabilistic Recovery Guarantee of StRIP

5. Construction Example
Motivation: Covariance matrix sketching

Given:

- $x \in \mathbb{C}^N$, a vector of N independent zero-mean random variables
- covariance matrix $X = \mathbb{E}[xx^*]$, sparse in most applications
- m linear measurements $y = Ax$, with measurement matrix $A \in \mathbb{C}^{m \times N}$

Determine X from Y

$$Y = \mathbb{E}[yy^*] = A\mathbb{E}[xx^*]A^* = AXA^*$$

using vectorization...

$$\tilde{y} = (\bar{A} \otimes A) \tilde{x}$$

with $\tilde{y} = \text{vec}\{Y\}$ and $\tilde{x} = \text{vec}\{X\}$

\Rightarrow Compressive Sensing setting!
Recap of relevant results in Compressive Sensing

Problem setting: \(y = Ax \) with \(A \in \mathbb{C}^{m \times N} \), where \(m \ll N \)

Definition (Restricted Isometry Property)

\(A \in \mathbb{C}^{m \times N} \) is said to fulfill the \(k \)-th restricted isometry property (abbrv. RIP) with the restricted isometry constant \(\delta_k \) (abbrv. RIC) if

\[
(1 - \delta_k) \|x\|_2^2 \leq \|Ax\|_2^2 \leq (1 + \delta_k) \|x\|_2^2
\]

holds for all \(k \)-sparse \(x \in \mathbb{C}^N \).

Theorem

*If \(A \) fulfills the \(2k \)-th RIP with RIC

\[
\delta_{2k} < \frac{1}{3}
\]

then every \(k \)-sparse \(x \) can be recovered uniquely by the \(\ell_1 \)-minimization (convex).*
Covariance matrix sketching & Compressive Sensing

Covariance matrix sketching as compressive sensing problem:

\[
\min \|\tilde{x}\|_0 \quad \text{subject to} \quad \tilde{y} = (\bar{A} \otimes A) \tilde{x}
\]

with \(\tilde{y} = \text{vec}\ \{Y\} \) and \(\tilde{x} = \text{vec}\ \{X\} \)

Question: Are there ”good” (deterministic) matrices for compressive sensing with Kronecker structure?

→ convex relaxation: \(\ell_1 \)-minimization instead of \(\ell_0 \)-minimization

- Result on RIC by Duarte and Baraniuk: \(\delta_k (\bar{A} \otimes A) \geq \delta_k (A) \)

⇒ For fixed sparsity, RIC of the Kronecker structured matrix is lower bounded by the RIC of the non-Kronecker matrix despite having quadratically more measurements.
Simulations: non-Kronecker structured matrices

Random Gaussian: Each entry of the sensing matrix is a Gaussian random variable.

Random Partial Fourier: Rows of the DFT matrix are chosen at random to form the sensing matrix.

EHF (Equiangular harmonic frames): The sensing matrix is a "carefully" chosen minor of the DFT matrix.
Simulation: Kronecker structured Gaussian matrices seem to be "bad" for CS.

From previous slide: \(\delta_k(A) \leq \delta_k(A \otimes A) \leq 2\delta_k(A) + \delta_k(A)^2 \)
Simulation: Kronecker structured partial Fourier

In contrast to Gaussian: random Fourier & Kronecker structured random Fourier matrices perform similarly.
Simulation: Kronecker structured EHF

→ An attempt of explanation based on *Statistical Isometry Property* (Def. by Calderbank, Howard, Jafarpour, 2010).
Standard CS versus StRIP Approach

Standard CS

- random sensing matrices
- deterministic vectors \(x \)
- recovery guarantee for all \(k \)-sparse vectors \(x \)
- recovery guarantee with high probability for random choice of \(A \)

⇒ randomness in the choice of the sensing matrix \(A \)

StRIP

- deterministic sensing matrix
- stochastic data vectors \(x \)
- recovery guarantee with high probability for random choice of \(x \)
- recovery guarantee for deterministic choice of \(A \)

⇒ randomness in the choice of the data vector \(x \)
Statistical Restricted Isometry Property (StRIP) - 1

Following definition of StRIP is by Calderbank, Howard and Jafarpour (2010).

Definition (StRIP & UStRIP)

- **A** = $\frac{1}{\sqrt{m}} \Phi \in \mathbb{C}^{m \times N}$ has (k, δ, ϵ) - StRIP if

\[
(1 - \delta) \|x\|_2^2 \leq \|Ax\|_2^2 \leq (1 + \delta) \|x\|_2^2
\]

holds with probability $1 - \epsilon$ for a random k-sparse vectors x (uniformly distributed over all k-sparse vectors).

- **A** is (k, δ, ϵ)-uniqueness-guaranteed StRIP (UStRIP) if

\[
Ax = Az \iff z = x, \quad \forall k\text{-sparse } z
\]

satisfied with probability $1 - \epsilon$.
Statistical Restricted Isometry Property (StRIP) - 2

Definition (η-StRIP)

$A = \frac{1}{\sqrt{m}} \Phi \in \mathbb{C}^{m \times N}$ with all entries of Φ having absolute value 1, is η-StRIP if St1 - St3 holds.

St1:
- rows of Φ are orthogonal
- sum of all elements in a row is equal to zero

St2:
- columns of Φ form a multiplicative group under pointwise multiplication

St3:
- $\exists \eta > 0$ s.t. $\left| \sum_{l=1}^{m} \phi_j[l] \right|^2 \leq m^{2-\eta}$ $\forall l$ apart from the identity column
Probabilistic recovery guarantee of StRIP

Theorem (Calderbank, Howard, Jafarpour)

Let \(\mathbf{A} = \frac{1}{\sqrt{m}} \Phi \in \mathbb{C}^{m \times N} \) be an \(\eta \)-StRIP matrix with \(\eta > 1/2 \). If \(k < 1 + (N - 1)\delta \) and

\[
m \geq \frac{(k \log N)}{\delta^2}
\]

for some constant \(c > 0 \) then \(\mathbf{A} \) is \((k, \delta, 2\epsilon)\)-UStRIP with

\[
\epsilon = 2 \exp \left(- \left(\delta - \frac{k-1}{N-1} \right)^2 \frac{m^\eta}{8k} \right).
\]

- Theorem connects structure of a deterministic CS matrix with probabilistic recovery guarantee.
- Easy applicability of StRIP on deterministic matrices (checking RIP is NP-Hard).
- Linear scaling of the number of measurements \(m \) with the sparsity \(k \).
- **Main idea:** use this theorem for Kronecker structured matrices.
\(\eta \)-StRIP for Kronecker structured matrices

Theorem
Assume \(A \in \mathbb{C}^{n \times N} \) is \(\eta_A \)-StRIP and \(B \in \mathbb{C}^{m \times M} \) is \(\eta_B \)-StRIP, then the following holds.

(a) \(\overline{A} \) is \(\eta_{\overline{A}} \)-StRIP with \(\eta_{\overline{A}} = \eta_A \).

(b) The matrix \(C = A \otimes B \in \mathbb{C}^{nm \times NM} \) is \(\eta_C \)-StRIP with

\[
\eta_C = \begin{cases}
\eta_A \frac{\ln(n)}{\ln(nm)} & \text{if } n \eta_A \leq m \eta_B \\
\eta_B \frac{\ln(m)}{\ln(nm)} & \text{if } n \eta_A > m \eta_B
\end{cases}
\]

Corollary
If \(A \in \mathbb{C}^{m \times N} \) is \(\eta \)-StRIP, then the matrix \(\overline{A} \otimes A \in \mathbb{C}^{m^2 \times N^2} \) is \((\eta/2) \)-StRIP.

- linear scaling of the number of measurements \(m^2 \) with the sparsity
 \[m^2 \geq ck \log N \]
- search for deterministic matrices \(A \) s.t. \(\eta_A > 1 \).
\textbf{η-StRIP matrices with } \eta > 1

- Coherence \(\mu \) of a matrix \(A \) is defined by

\[
\mu(A) = \max_{i,j \text{ s.t. } i \neq j} |\langle a_i, a_j \rangle| \]

- using the Welch bound, for a matrix \(A \) fulfilling the \(\eta \)-StRIP definition follows:

\[
\sqrt{\frac{N - m}{m (N - 1)}} \leq \mu(A) \leq \frac{1}{\sqrt{m \eta}}
\]

\(\Rightarrow \) upper bound on \(\eta \):

\[
\eta \leq 1 + \ln \left(\frac{N - 1}{N - m} \right) \frac{1}{\ln (m)}
\]

\(\Rightarrow \) any \(\eta \)-StRIP matrix coming very close to the Welch bound
Example (Equiangular Harmonic Frames)

EHFs are partial Fourier matrices with \(\mu = \sqrt{\frac{N-m}{m(N-1)}} \)

construction is based on difference sets

\(\{0, 1, 3\} \) forms a \((7, 3, 1)\) diff. set in \(\mathbb{Z}_7 \) (integers modulo 7)

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & \omega^1 & \omega^2 & \omega^3 & \omega^4 & \omega^5 & \omega^6 \\
1 & \omega^2 & \omega^4 & \omega^6 & \omega^1 & \omega^3 & \omega^5 \\
1 & \omega^3 & \omega^6 & \omega^2 & \omega^5 & \omega^1 & \omega^4 \\
1 & \omega^4 & \omega^1 & \omega^5 & \omega^2 & \omega^6 & \omega^3 \\
1 & \omega^5 & \omega^3 & \omega^1 & \omega^6 & \omega^4 & \omega^2 \\
1 & \omega^6 & \omega^5 & \omega^4 & \omega^3 & \omega^2 & \omega^1 \\
\end{bmatrix}
\]

\[
DFT_7 = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & \omega^1 & \omega^2 & \omega^3 & \omega^4 & \omega^5 & \omega^6 \\
1 & \omega^2 & \omega^4 & \omega^6 & \omega^1 & \omega^3 & \omega^5 \\
1 & \omega^3 & \omega^6 & \omega^2 & \omega^5 & \omega^1 & \omega^4 \\
1 & \omega^4 & \omega^1 & \omega^5 & \omega^2 & \omega^6 & \omega^3 \\
1 & \omega^5 & \omega^3 & \omega^1 & \omega^6 & \omega^4 & \omega^2 \\
1 & \omega^6 & \omega^5 & \omega^4 & \omega^3 & \omega^2 & \omega^1 \\
\end{bmatrix}
\]

\[
EHF_3 = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & \omega^1 & \omega^2 & \omega^3 & \omega^4 & \omega^5 & \omega^6 \\
1 & \omega^3 & \omega^6 & \omega^2 & \omega^5 & \omega^1 & \omega^4 \\
\end{bmatrix}
\]
Summary

- Investigation of Kronecker structured sensing matrices for compressive sensing
- Used the StRIP approach for Kronecker structured sensing matrices
- Proved statistical recovery guarantees where the number of measurements scales linearly with the sparsity

Deterministic Matrices

Random Partial Fourier

StRIP approach

no explanation yet