HMM-based approaches to model multichannel information in sign language inspired from articulatory features-based speech processing

Sandrine Tornay1,2 Marzieh Razavi3 Necati Cihan Camgöz4
Richard Bowden4 Mathew Magimai.-Doss1

1 - Idiap Research Institute, Martigny, Switzerland
2 - Ecole polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
3 - Telepathy Labs GmbH, Zürich, Switzerland
4 - University of Surrey, Guildford, UK

funded the project SMILE
Content of the video:
Human right - Freedom of language
Swiss french sign language

Multichannel information:

- **Manual features** - hand shape, orientation, motion, position and location
- **Non-manual features** - facial expression, body posture, mouthings, mouth gestures

Challenges:

1. How to reliably extract the multichannel information?
2. How to model the multichannel information?
Necessitates:
Modelling the synergy between the production phenomenon and the perception phenomenon in relation to the signal.
Communication process (2)

<table>
<thead>
<tr>
<th></th>
<th>Spoken Language</th>
<th>Sign Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production</td>
<td>Movement of tongue, lips and jaw, vocal fold vibration</td>
<td>Hand gestures, body posture, mouthing, facial expression, etc.</td>
</tr>
<tr>
<td>Signal</td>
<td>Audio Sequential (Cepstral feature seq.)</td>
<td>Video Parallel + Sequential</td>
</tr>
<tr>
<td></td>
<td>Parallel + Sequential (Articulatory features)</td>
<td></td>
</tr>
<tr>
<td>Perception</td>
<td>Auditory Seq. of phonemes, words and sentences</td>
<td>Visual Seq. of words and phrases</td>
</tr>
</tbody>
</table>
Inspiration from speech processing

Tandem approach

- **Perception Space**
- **Production Space**
- **Acoustic Space**

State sequence based on phonemes/graphemes

Local score: log likelihood function

KLT(log(z_t)) → AF posterior estimation, e.g. manner

... → AF posterior estimation, e.g. place

Acoustic feature sequence: (x_1, ..., x_t, ..., x_T)

KL-HMM based approach

- **Perception Space**
- **Production Space**
- **Acoustic Space**

State sequence based on phonemes/graphemes

Local score: Kullback-Leibler divergence S(y_t, z_t)

... → AF posterior estimation, e.g. manner

... → AF posterior estimation, e.g. place

Acoustic feature sequence: (x_1, ..., x_t, ..., x_T)

Citation numbering comes from the paper
Proposed approaches

Tandem approach

How to define the state sequence?

![Diagram showing the tandem approach](image)

Local score: log likelihood function

$\text{KLT}(\log(z_{ht}))$

VS_{hsp} posterior estimation, e.g. hand shape

VS_{hmvt} skeleton information

Visual Space

Visual feature sequence: $(x_1, \ldots, x_t, \ldots, x_T)$

KL-HMM based approach

How to define the state sequence?

![Diagram showing the KL-HMM based approach](image)

Local score: Kullback Leibler divergence $S(y_s, z_t)$

VS_{hsp} posterior estimation, e.g. hand shape

VS_{hmvt} posterior estimation, e.g. hand movement

Visual Space

Visual feature sequence: $(x_1, \ldots, x_t, \ldots, x_T)$

Stack of categorical state distributions

Stack of posterior probability distributions
The SMILE dataset was created in the context of developing an assessment system for lexical signs of Swiss German sign language (DSGS)

- 100 isolated signs of a DSGS vocabulary production test - 94 selected;

- 11 adult L1 signers and 19 adult L2 signers = 30 signers - (17 train, 3 dev, 10 test);

- SMILE dataset was collected with the Microsoft Kinect v2 sensor and the high speed and high resolution GoPro video cameras;

- Each sign was performed 3 times and only the second pass was annotated - Only the annotated «acceptable» signs of second pass was used in the following experiment;
Proposed approaches

Tandem approach

How to define the state sequence?

Perception Space

Local score: log likelihood function

Production Space

KL-HMM based approach

How to define the state sequence?

Perception Space

Local score: Kullback Leibler divergence \(S(y_s, z_t) \)

Production Space

Visual feature sequence: \((x_1, \ldots, x_t, \ldots, x_T) \)

Visual feature sequence: \((x_1, \ldots, x_t, \ldots, x_T) \)
We used the Deep hand net developed by [23]:

\[\text{Images} \xrightarrow{\text{Crop Hands}} \text{CNN} \xrightarrow{\text{KL-HMM based approach}} z_{hshp} \]

The CNN is trained on the 1-Million-Hands dataset [23] containing 60 hand shapes + 1 transition shape.

\[z_{hshp} \xrightarrow{\text{Tandem approach}} \text{KLT} (\log(z_{hshp})) \xrightarrow{\text{Kahunen Loeve Transform (KLT)}} x_{hshp} \]

Vector dimension = 61

[23] O. Koller, H. Ney, and R. Bowden, « Deep hand: How to train a CNN on 1 million hand images when your data is continuous and weakly labelled », in Proc. of the IEEE CVPR 2016
Feature extraction - Hand movement

- **Position features** given by 3D coordinate of a human skeleton:
 \[p_t^C = \frac{\text{hand} - \text{C}}{|\text{head} - \text{neck}|/4}, \text{where } C \in \{\text{head}, \text{shoulder}, \text{hip}\}; \]

- **Velocity features** given by delta features:
 \[v_t^C = p_t^C - p_{t-2}^C. \]

Movement features are concatenation of position and velocity of both hands according to head, shoulder, hip coordinate centers.

Tandem approach

\[x^{hmvt} \]

Vector dimension = 36

KL-HMM based approach

\[1 \rightarrow 2 \rightarrow \cdots \rightarrow n \]

sign-based models

\[x^{hmvt} \rightarrow \text{GMM} \rightarrow z^{hmvt} \]

Priors

Vector dimension = 849
Proposed approaches

Sandrine Tornay

Modelling Multichannel information in Sign Language

Tandem approach

KL-HMM based approach

Perception Space

Production Space

Visual Space

Visual feature sequence: \((x_1, \ldots, x_t, \ldots, x_T)\)

Visual feature sequence: \((y_1, y_2, y_3)\)

Local score: \(\text{log likelihood function}\)

Local score: \(\text{Kullback-Leibler divergence } S(y_s, z_t)\)

How to define the state sequence?

How to define the state sequence?

VS\(^{\text{hshp}}\) posterior estimation, e.g. hand shape

VS\(^{\text{hmvt}}\) posterior estimation, e.g. hand movement

VS\(^{\text{hshp}}\) posterior estimation, e.g. hand shape

VS\(^{\text{hmvt}}\) posterior estimation, e.g. hand movement

Stack of posterior probability distributions

Stack of categorical state distributions

KLT(\(\log(z_{hshp}^t)\))

x\(^{hshp}^s\) \(\oplus\) x\(^{hmvt}^s\)

x\(^{hshp}^t\)

x\(^{hmvt}^t\)

\(\vdots\)

\(\vdots\)

\(\vdots\)

\(\vdots\)

x\(_1^{hshp}\)

x\(_1^{hmvt}\)

x\(_T^{hshp}\)

x\(_T^{hmvt}\)

VS\(^{\text{hshp}}\) skeleton information

VS\(^{\text{hmvt}}\) skeleton information

\(\vdots\)

\(\vdots\)

\(\vdots\)

\(\vdots\)

11/16
HMM-based recognition framework

- **Training:** Multiple left-to-right HMM-based systems are trained for each sign depending on the number of state n: where $3 \leq n \leq 9$

- **Recognition:** Model selection framework
Sign Language Recognition Results

Sign Recognition Accuracy

<table>
<thead>
<tr>
<th>Model</th>
<th>Movement</th>
<th>Shape</th>
<th>Movement + Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMM/GMM</td>
<td>51.6</td>
<td>50.3</td>
<td>44.3</td>
</tr>
<tr>
<td>TANDEM</td>
<td>66.8</td>
<td>50.3</td>
<td>63.1</td>
</tr>
<tr>
<td>KL-HMM</td>
<td>51.6</td>
<td>50.3</td>
<td>32.8</td>
</tr>
</tbody>
</table>

This table compares the sign recognition accuracy for different models: HMM/GMM, TANDEM, and KL-HMM. The accuracy figures indicate the percentage of correctly recognized signs.
Analysis - Hand Movement Feature

Modelling Multichannel Information in Sign Language

Sandrine Tornay

Sign Language

Speech Inspiration

Proposed Approaches

Experimental Setup

Results and Analysis

Summary

Proposed Approaches

- **HMM/GMM**
- **Tandem KL-HMM with GMM**
- **KL-HMM with MLP**

Experimental Setup

<table>
<thead>
<tr>
<th>Model</th>
<th>Movement</th>
<th>Shape</th>
<th>Movement + Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMM/GMM</td>
<td>66.8</td>
<td>32.8</td>
<td>47.3</td>
</tr>
<tr>
<td>TANDEM</td>
<td>51.6</td>
<td>32.8</td>
<td>44.3</td>
</tr>
<tr>
<td>KL-HMM with GMM</td>
<td>63.1</td>
<td>32.8</td>
<td>47.3</td>
</tr>
<tr>
<td>KL-HMM with MLP</td>
<td>71.9</td>
<td>32.8</td>
<td>47.3</td>
</tr>
</tbody>
</table>
Further analysis

Advantages of KL-HMM approach

1. Possibility of separating the movement features into position and velocity

2. Possibility to analyse the trained categorical distributions; Here the hand shape ones

- Well-recognised example
- Poor-recognised example
elucidated the link between articulatory feature-based speech processing and sign language processing

proposed two HMM-based approaches to model multichannel information in sign language
 - Tandem approach and KL-HMM based approach
 - Both approaches yielded promising results

demonstrated flexibility and interpretability of the KL-HMM approach

On-going Work
- developing an assessment system for Swiss German sign language learners (SMILE project).

A video of the assessment system demonstrator is available at: www.idiap.ch/project/smile/news/smile-how-it-works

Questions?