

6th IEEE Global Conference on Signal and Information Processing

Quickest Freeway Accident Detection Under Unknown Post–Accident Conditions

Yasitha Warahena Liyanage, Daphney–Stavroula Zois

Electrical and Computer Engineering Department University at Albany, SUNY

IMAgINE Lab

Charalampos Chelmis

Computer Science Department

University at Albany, SUNY

27 November 2018

Motivation

- Around 40,100 people died due to road accidents in 2017, a 6% increase from 2015 [NationalSafetyCouncil2017]
- Traffic accidents cause also tremendous loss in time and energy [TTInstitute2015]
- Two **key practical issues** in traffic accident detection thus far remain unaddressed:
 - Low delay in detection
 - Low probability of false alarm

Goal: detect accidents as quickly as possible, while keeping false detection of accidents low

Related Work

- Mostly focused on intersections using image, video, and sound features (e.g., [Ki2007])
- Does not explicitly model detection delay and/or false alarm rate (e.g., [Yue2016])
- Makes explicit assumptions about the expected behavior of the time– series using well–known models (e.g., ARIMA) [Laptev2015]
- We generalize our prior work [Liyanage2018] to
 - accommodate unknown parameters
 - estimate unknown parameters over time using maximum likelihood principles

Problem Description

- Freeway with set \mathcal{L} of spatially distributed sensors
 - Average speed readings $\{Y_k^i\}, k \in \{0, 1, \dots\}, s_i \in \mathcal{L}$ are generated
 - Accident sensitive features $\{Z_k^i\}, k \in \{0, 1, ...\}, s_i \in \mathcal{L}$ are extracted
- At an unknown time ν , an accident occurs
 - Pre-accident features $Z_1^i, Z_2^i, ..., Z_{\nu-1}^i \Longrightarrow f_0(Z_k^i) \sim \mathcal{N}(\mu_0, \sigma_0^2)$
 - Post–accident features $Z_{
 u}, Z_{
 u+1}, \ldots \implies f_1(Z_k^i) \sim \mathcal{N}(\mu_1, \sigma_1^2)$

• Model accident time ν as a zero–modified geometric random variable

$$P(\nu = j) = \begin{cases} \pi & \text{if } j = 0\\ (1 - \pi)\rho(1 - \rho)^{j-1} & \text{if } j = 1, 2, ... \end{cases}$$

Optimization Problem

Goal: select a stopping time *τ* to stop reviewing features and declare an accident
 ✓ average detection delay

 $\min_{\tau} \quad d_a(\tau)^{\bullet}$ $P_{\rm FA}(\tau) \le \gamma$

probability of false alarm

$$- d_a(\tau) \triangleq \mathbb{E}\{(\tau - \nu)^+\}, \text{ where } x^+ = \max(0, x)$$

s.t.

$$- P_{\rm FA}(\tau) \triangleq P(\tau < \nu)$$

Optimal Solution

• Lagrangian relaxation of the optimization problem

$$J_{L} = \min_{\tau} \left[\mathbb{E} \{ (\tau - \nu)^{+} \} + \lambda P(\tau < \nu) \right]$$

Lagrange multiplier λ

• Optimal solution via infinite horizon dynamic programming

$$\tau_{\text{optimal}} = \inf \left\{ k \ge 0 \mid \pi_k \ge (1 - \gamma) \right\}$$

$$sufficient \ \text{statistic}$$

$$\pi_k \triangleq P(\nu \leqslant k | Z_1^i, Z_2^i, \dots, Z_k^i)$$

Unknown Post–Accident Distribution Parameters

- 2
- We focus on the case where known μ_0 changes to unknown μ_1 , while variance σ^2 remains unaltered
- The likelihood ratio $\varpi_k = \frac{\pi_k}{1 \pi_k}$ is computed as

$$arpi_k = rac{\sum_{j=0}^k \lambda(j) \prod_{l=j}^k rac{f_1(Z_l^i)}{f_0(Z_l^i)}}{\sum_{j=k+1}^\infty \lambda(j)}$$

• Maximizing the lower bound of likelihood with respect to μ_1

$$\hat{\mu}_{1,k} = \frac{\sum_{j=0}^{k} \lambda(j) \sum_{l=j}^{k} Z_{l}^{i}}{\sum_{j=0}^{k} \lambda(j)(k-j+1)}$$

Optimal Solution Implementation

• For implementation convenience, \log -likelihood ratio $g_k \triangleq \log(\varpi_k)$ is used

$$g_k = \log(\rho + e^{g_{k-1}}) - \log(1-\rho) + \frac{(2Z_k^i - (\hat{\mu}_{1,k} + \mu_0))(\hat{\mu}_{1,k} - \mu_0)}{2\sigma^2}$$

• Optimal stopping strategy becomes

$$au_{\text{optimal}} = \inf \left\{ k \ge 0 \mid g_k \ge \delta^* \right\}, \ \ \delta^* = \log\left(\delta\right)$$

ATTAIN-ML: <u>Accurate and Timely Traffic AccIdent</u> Detectio<u>N</u> using <u>ML</u> principles

- Accident sensitive feature
 - Speed ratio computed at each timestep $k, \forall s_i \in \mathcal{L}_N$ via:

$$Z^i_k = rac{(Y^i_k - \overline{Y^i_k})}{\overline{Y^i_k}}$$
 $\overline{Y^i_k}$: Historical average speed

- Decision Schemes
 - AL (At Least one): one sensor in \mathcal{L}_N detects
 - **MV** (Majority Vote): majority sensors in \mathcal{L}_N detects
 - WD (Weighted Distance): decisions are weighted by sensor distance
 - SA (Sensor Accuracy): decisions are weighted by sensor accuracy

Experiments

October 2013

- Dataset
 - I405 freeway in Los Angeles County
 - 822, 049 speed readings
 - 1, 158 accident reports
- Speed readings
 - Measured in mph
 - Every 5 minutes from 6am to 9pm everyday
 - 223 sensors placed approximately 0.5 miles apart in both north and south directions

Validation of Model Assumptions

• Gaussian assumption: Pearson's correlation coefficient from Q-Q plots

- Both distributions pass the Gaussianity test with confidence level > 0.95
- Geometric prior for accident time: χ^2 goodness of fit test

Results

- Baselines:
 - Interval Grouping (IIG) algorithm with "Nearest Center" grouping heuristic [Yue2016]
 - Change point detection methods (EGDAS) for time-series data [Laptev2015]
- ATTAIN–ML achieves
 - 81.5% improvement in false alarm rate compared to EGADS–RM
 - 58.9% improvement in average detection delay compared to EGADS–OM
- Compared to our prior work [Liyanage2018], average detection delay improvements range from 4.6% to 19.7% for same false alarm rate

Contributions & Future Directions

- Contributions
 - Bayesian quickest change detection framework to optimize trade-off between average detection delay and false alarm rate
 - **Recursive ML method** to track unknown parameters over time
- Future directions
 - Devise optimal aggregation schemes to improve robustness of decisionmaking process
 - Jointly estimate accident time and location
- Questions?

email: <u>yliyanage@albany.edu</u>

References

[NationalSafetyCouncil2017] National Safety Council, "*Nsc motor vehicle fatality estimates*," 2017, [Online]. Available:

https://www.nsc.org/portals/0/documents/newsdocuments/2018/december_2017.pdf

[TTInstitute2015] T. T. Institute, "2015 urban mobility scorecard," 2015. [Online] Available: https://static.tti.tamu.edu/tti.tamu.edu/documents/mobility-scorecard-2015.pdf.

[Ki2007] Y. K. Ki and D. Y. Lee, "*A Traffic Accident Recording and Reporting Model at Intersections*," IEEE Transactions on Intelligent Transportation Systems, vol. 8, pp. 188–194, June 2007.

[Yue2016] M. Yue, L. Fan, and C. Shahabi, *"Inferring Traffic Incident Start Time with Loop Sensor Data,"* in 25th ACM International on Conference on Information and Knowledge Management, 2016, pp. 2481–2484.

[Laptev2015] N. Laptev, S. Amizadeh, and I. Flint, "*Generic and scalable framework for automated time-series anomaly detection*," in 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015, pp. 1939–1947.

[Liyanage2018] Y. W. Liyanage, D.-S. Zois, and C. Chelmis, "*Optimal Sequential Detection of Freeway Accidents*," in Asilomar Conference on Signals, Systems, and Computers (ACSSC), 2018.

