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Motivation

• Around 40,100 people died due to road accidents in 2017, a 6% increase
from 2015 [NationalSafetyCouncil2017]

• Traffic accidents cause also tremendous loss in time and energy
[TTInstitute2015]

• Two key practical issues in traffic accident detection thus far remain
unaddressed:

– Low delay in detection

– Low probability of false alarm
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Goal: detect accidents as quickly as possible, while keeping false detection of
accidents low



Related Work

• Mostly focused on intersections using image, video, and sound
features (e.g., [Ki2007])

• Does not explicitly model detection delay and/or false alarm rate (e.g.,
[Yue2016])

• Makes explicit assumptions about the expected behavior of the time–
series using well–known models (e.g., ARIMA) [Laptev2015]

• We generalize our prior work [Liyanage2018] to

– accommodate unknown parameters

– estimate unknown parameters over time using maximum likelihood
principles
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Problem Description
• Freeway with set     of spatially distributed sensors

– Average speed readings are generated

– Accident sensitive features                                                  are extracted

• At an unknown time    ,  an accident occurs

– Pre–accident features

– Post–accident features

• Model accident time     as a zero–modified geometric random variable 
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Optimization Problem

• Goal: select a stopping time to stop reviewing features and declare an
accident

–

–
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average detection delay

probability of false alarm



Optimal Solution

• Lagrangian relaxation of the optimization problem

• Optimal solution via infinite horizon dynamic programming
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sufficient statistic

Lagrange multiplier



Unknown Post–Accident Distribution Parameters

• We focus on the case where known changes to unknown , while
variance remains unaltered

• The likelihood ratio is computed as

• Maximizing the lower bound of likelihood with respect to
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Optimal Solution Implementation

• For implementation convenience, log–likelihood ratio is
used

• Optimal stopping strategy becomes
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ATTAIN-ML: Accurate and Timely Traffic AccIdent 
DetectioN using ML principles
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• Accident sensitive feature

– Speed ratio computed at each
timestep via:

:  Historical average speed

• Decision Schemes
– AL (At Least one): one sensor in           detects

– MV (Majority Vote): majority sensors in      
detects

– WD (Weighted Distance): decisions are
weighted by sensor distance

– SA (Sensor Accuracy): decisions are weighted
by sensor accuracy



Experiments
• Dataset

– I405 freeway in Los Angeles County

– 822, 049 speed readings

– 1, 158 accident reports

• Speed readings

– Measured in mph

– Every 5 minutes from 6am to 9pm everyday

– 223 sensors placed approximately 0.5 miles apart in both north and south
directions
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Accident on north lane of I405 at 
2.52pm on October 1st, 2013 

October 2013



Validation of Model Assumptions

• Gaussian assumption: Pearson’s correlation coefficient from Q-Q plots

– Both distributions pass the Gaussianity test with confidence level > 0.95

• Geometric prior for accident time: goodness of fit test

11



Results

• Baselines:

– Interval Grouping (IIG) algorithm
with “Nearest Center” grouping
heuristic [Yue2016]

– Change point detection methods
(EGDAS) for time–series data
[Laptev2015]

• ATTAIN–ML achieves

– 81.5% improvement in false alarm
rate compared to EGADS–RM

– 58.9% improvement in average
detection delay compared to
EGADS–OM
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• Compared to our prior work [Liyanage2018], average detection delay
improvements range from 4.6% to 19.7% for same false alarm rate



• Contributions

– Bayesian quickest change detection framework to optimize trade–off
between average detection delay and false alarm rate

– Recursive ML method to track unknown parameters over time

• Future directions

– Devise optimal aggregation schemes to improve robustness of decision–
making process

– Jointly estimate accident time and location

• Questions?

Contributions & Future Directions
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