Background & Motivation
- Accurate and timely recognition of the trigger keyword is vital.
- There is a trade-off needed between accuracy and latency.
- Existing works focus on accuracy and computational latency.

Proposed system:
Unified speculation, detection, and verification model
Speculation makes an early decision, which can be used to give a head-start to downstream processes on the device.
Verification verifies previous decision after the keyword span.

Model Architecture
CNN encoder behaves as an efficient feature extractor to model local temporal and spectral dependencies:
- Convolutional neural network front-end has a receptive field of 34 frames and has a stride of 6 frames.
- Each layer is composed of a convolution layer, a rectified linear unit activation layer, an optional max pooling layer, a batch normalization layer and a drop out layer.
- Outputs are vectorized and fed to RNN decoder

Model Architecture (cont.)
CNN decoder captures dependencies among different frames:
- A long short-term memory (LSTM) layer captures dependencies using “gating” mechanism.
- A fully-connected (FC) layer is used to further transform features before Softmax output.
- Due to the similarity of speculation, detection, and verification tasks, i.e., all of them try to detect the same word from audio, we share the same convolutional front-end, LSTM, and FC layer for them to reduce model size.
- We only add three output heads with separate linear layers for dimension reduction and Softmax outputs.
- The additional computations to achieve these three tasks simultaneously are only introduced by these small output heads, hence are negligible.

Experimental Results
- Speculation models from both the single task baseline and USDV have the earliest detection.
- Verification models achieve the lowest FAR with more right context.
- USDV model is able to achieve three tasks with different accuracy and latency trade-off, which validates the effectiveness of the MTL training and latency-aware max-pooling loss.
- USDV model achieves same level of performance as baseline models, which shows that the CRNN architecture has enough capacity to perform all three task simultaneously.

Conclusions
- We propose an CRNN-based unified speculation, detection, and verification keyword detection model.
- We propose a latency-aware max-pooling loss, and show empirically that it teaches a model to maximize accuracy under the latency constraint.
- A USDV model can be trained in a MTL fashion and achieves different accuracy and latency trade-off across these three tasks.