ROBUST DISENTANGLED VARIATIONAL SPEECH REPRESENTATION LEARNING FOR ZERO-SHOT VOICE CONVERSION

Jiachen Lian^, Chunlei Zhang*, Dong Yu*

^UC Berkeley, BAIR, CA *Tencent AI Lab, Bellevue, WA

ICASSP 2022
Session: SPE-19:Voice Conversion-Representation
May 7 - 13, 2022, Singapore
Outline

• Introduction
 • Limitations of current VC systems
 • Solutions achieving robust zero-shot VC

• Disentangled Sequential VAE for Zero-shot Voice Conversion
 • Overall framework
 • Disentanglement-aware probabilistic graphical models
 • Training Objectives
 • Noise-invariant VC

• Experimental results

• Conclusion
VC Objective: swapping the speaker while keeping the content unchanged

Limitations of current VC systems:

1. Parallel training
2. Non-parallel training: speakers are pre-known
3. Zero-shot VC:
 (1) Speaker labels are used in data loader
 (2) Speaker embedding is pre-trained with labels

Ours:
1. Non-parallel training
2. Zero-shot
3. No speaker labels. No pre-trained speaker embeddings.
4. Noise-invariant
Disentangled Sequential Variational Auto-Encoder Framework

DSVAE-VC Diagram

- X: Melspec
- E_{share}: Shared Encoder
- E_S: Speaker Encoder
- E_C: Content Encoder
- D: Decoder
- Z_S: Speaker Embedding
- Z_C: Content Embedding
- Vocoder: Wavenet
Disentanglement-Aware Probabilistic Graphical Models

Independence (Disentangled) Factorization

Prior:
\[p_\theta(Z) = p(Z_S)p_\theta(Z_C) = p(Z_S) \prod_{t=1}^{T} p_\theta(z_{Ct}|z_{<t}) \]

Posterior:
\[q_\theta(Z|X) = q_\theta(Z_S, Z_C|X) = q_\theta(Z_S|X)q_\theta(Z_C|X) \]
Training Objectives

Prior:

\[p_\theta(Z) = p(Z_S)p_\theta(Z_C) = p(Z_S) \prod_{t=1}^{T} p_\theta(z_{ct}|z_{c<t}) \]

Posterior:

\[q_\theta(Z|X) = q_\theta(Z_S,Z_C|X) = q_\theta(Z_S|X)q_\theta(Z_C|X) \]

Loss Objectives:

\[\mathcal{L} = \mathbb{E}_{p(X)}\mathbb{E}_{q_\theta(X|Z_S,Z_C)}[-\log(p_\theta(X|Z_S,Z_C))] + \mathbb{E}_{p(X)}[\alpha kl(p(Z_S)||q_\theta(Z_S|X)) + \beta kl(p_\theta(Z_C)||q_\theta(Z_C|X))] \]
Training Objectives - Disentanglement

Loss Objectives:

\[\mathcal{L} = \mathbb{E}_{p(x)} \mathbb{E}_{q_\theta(x|z_s, z_c)} \left[-\log(p_\theta(x|z_s, z_c)) \right] + \mathbb{E}_{p(x)} \left[\alpha \text{kl}(p(z_s)||q_\theta(z_s|x)) + \beta \text{kl}(p_\theta(z_c)||q_\theta(z_c|x)) \right] \]

How is disentanglement achieved?

1. Balancing factors and KL vanishing
2. Time-domain Normalization
Denoising Auto-Encoder!

Clean utterance is augmented by MUSAN dataset with a balanced "noise", "music" and "babble" distribution
1. TIMIT Dataset

 (1) Train/Test split
 The official training set/test set with 462 speakers/24 speakers.
 Following [1], all 18336 trials in test set are used for speaker verification.

 (2) Acoustic Features
 200 dimensional STFT features with 25ms/10ms framing configuration.
 During training, segment length is fixed to 20 frames.

2. VCTK Dataset

 (1) Train/Test split
 90% of the speakers are randomly selected for training and the remaining 10% as for testing.
 Randomly generate 36900 trials from test set for speaker verification.

 (2) Acoustic Features
 80 dimensional melspectrogram as features with 64ms/16ms framing configuration.
 During training, segment length is fixed to 100 frames.

Evaluation Metrics

1. Equal Error Rate
 - Speaker Embedding
 - Content Embedding

2. MOS

 1 = Bad; 2 = Poor; 3 = Fair; 4 = Good; 5 = Excellent

VCTK only: 6 speakers (3 females and 3 males), one utterance per speaker.
1. Adjusting $\frac{\beta}{\alpha}$ could control disentanglement.
2. Higher EER on content and lower EER on speaker not necessarily correspond to better disentanglement.

Loss Objectives:

$$\mathcal{L} = \mathbb{E}_{p(X)}\mathbb{E}_{q_{\theta}(X|Z_S, Z_C)}[-\log(p_{\theta}(X|Z_S, Z_C))] + \mathbb{E}_{p(X)}[\alpha \text{kl}(p(Z_S)||q_{\theta}(Z_S|X)) + \beta \text{kl}(p_{\theta}(Z_C)||q_{\theta}(Z_C|X))]$$

Table 1. EER (%) for TIMIT test trials on varying $\frac{\beta}{\alpha}$.

<table>
<thead>
<tr>
<th>$\frac{\beta}{\alpha}$</th>
<th>1</th>
<th>10</th>
<th>20</th>
<th>100</th>
<th>DSVAE [16]</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_S</td>
<td>5.40</td>
<td>3.25</td>
<td>4.16</td>
<td>5.01</td>
<td>4.94</td>
</tr>
<tr>
<td>μ_C</td>
<td>31.09</td>
<td>38.83</td>
<td>37.16</td>
<td>38.79</td>
<td>17.49</td>
</tr>
</tbody>
</table>
Results – VC quality and demo

Table 2. The results of the MOS (95% CI) test on different models.

<table>
<thead>
<tr>
<th>model</th>
<th>seen to seen</th>
<th></th>
<th></th>
<th>seen to unseen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>naturalness</td>
<td>similarity</td>
<td></td>
<td>naturalness</td>
</tr>
<tr>
<td>AUTOVC [13]</td>
<td>2.65±0.12</td>
<td>2.86±0.09</td>
<td>2.47±0.10</td>
<td>2.76±0.08</td>
</tr>
<tr>
<td>AdalN-VC [14]</td>
<td>2.98±0.09</td>
<td>3.06±0.07</td>
<td>2.72±0.11</td>
<td>2.96±0.09</td>
</tr>
<tr>
<td>Ours</td>
<td>3.40±0.07</td>
<td>3.56±0.06</td>
<td>3.22±0.09</td>
<td>3.54±0.07</td>
</tr>
<tr>
<td>Ours(noisy)</td>
<td>3.23±0.09</td>
<td>3.43±0.07</td>
<td>3.12±0.08</td>
<td>3.47±0.08</td>
</tr>
</tbody>
</table>

Vocoder is WaveNet.
HiGi-GAN is also used in the updated demo.

Demo sample:

Complete demo: https://jlian2.github.io/Robust-Voice-Style-Transfer/
Conclusions

1. DSVAE-VC: Non-parallel, zero-shot, no speaker labels, no pre-trained speaker embeddings

2. Disentanglement is adjustable and controllable

3. State-of-the-art performance on both SV and VC

4. A unified framework that can be beneficial to ASR, TTS, etc.
Thank You!