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Introduction
Manifold learning techniques have become of great interest when studying high
dimensional data.
• Usually, the data have an extrinsic dimensionality that is artificially high, while
its intrinsic structure is well-modeled as a low-dimensional manifold plus noise.
• Following the same line of reasoning, dynamical systems and time series can
be regarded as processes governed by few underlying parameters, confined in a
low-dimensional manifold.

Goal: Discover low-dimensional representations of high dimensional dynamical
systems.

Figure 1: The process can be visualized in a low dimensional representation in the space of
some underlying parameters θ driving the system. The figure shows a 12-dimensional
dynamical system. And the goal is to represent time windows of the data as points in a

low-dimensional manifold.
Contributions:
• A novel manifold learning technique for dynamical systems called
DIG (Dynamical information geometry).
• Incorporation of a novel group of distances in the context of
diffusion operators.

Manifold Learning with Diffusion Operators

The use of diffusion operators in manifold learning was first introduced in Diffusion
Maps [1]. Recently, more suited algorithms for visualization have been presented,
such as PHATE [3]:
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Figure 2: PHATE steps.1. Compute the distances between observations, typically the euclidean
distance is employed in this step. 2. Apply an adaptive kernel function to d(xi, xj), and then

row-normalize it to create a row stochastic matrix called the potential operator. 3. Diffuse the
potential operator t-steps forward. 4., Compute an information distance between the rows of P t.

Finally in 5, apply metric MDS to D2
γ,t.

• Diffusion Maps encapsulates the information in many dimensions.
• PHATE captures information in fewer dimensions ⇒ better for visualization.

Diffusion with Dynamical Systems

In the context of dynamical systems we learn the local structure by constructing
a matrix that encodes the local distances between time windows of data.

State-space formalism:

xt = yt(θt) + ξt (1)

dθit = ai(θit)dt + dwi
t, i = 1, . . . , d. (2)

• p(x|θ) is a linear transformation of p(y|θ)
New feature space, obtained by the histogram bins of the data within time win-
dows of length L1 centered at xt:

xt⇒ ht

• The expected value of the histograms, e.g. E(hjt ), is a linear transformation of
p(x|θ)
• The Mahalanobis distance is invariant under linear transformations.
⇒ Distance (3) is noise resilient [4, 5]

d2(xt,xs) = (E(ht)− E(hs))
T (Ct)

−1(E(ht)− E(hs)), (3)

Alternative distance:

Assumes that the data within time windows of length L1 centered at xt follows a
multivariate Gaussian distributionN (µ,Σt).
• The geodesic distance between different time windows of data centered at xt
and xs using the Fisher information as the Riemannian metric is as follows:

d2(xt,xs) =
1

2

N∑
i=1

ln(λi), where |Σt − λiΣs| = 0 (4)

Information Distances
DIG extracts the information from the diffusion operator by em-
bedding an information distance. We focus on a broad family of
information distances that are parametrized by γ:
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(5)

Additionally, the rows of the diffusion matrix P can be in-
terpreted as multinomial distributions. The geodesic dis-
tance between them using the Fisher information as the
Riemannian metric is as follows:

D(xi,xj) = 2cos−1
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After the information distances have been obtained, DIG applies metric multidimensional scaling (MDS) to the information
distances to obtain a low-dimensional representation

Algorithm

Algorithm 1 The DIG algorithm
Input: Data matrix X , neighborhood size k, locality scale α, time windows length L1 and L2, number of bins Nb, information parameter γ, desired

embedding dimension m (usually 2 or 3 for visualization)
Output: The DIG embedding Ym

1: d← compute pairwise distance matrix from X using the mahalanobis distance (3)
2: Kk,α ← compute local affinity matrix from d and σk
3: P ← normalize Kk,α to form a Markov transition matrix (diffusion operator)
4: t← compute time scale via Von Neumann Entropy [3]
5: Diffuse P for t time steps to obtain P t

6: Dγ
t ← compute the information distance matrix in eq. 5 from P t for the given γ

7: Y ′ ← apply classical MDS to Dγ
t

8: Ym ← apply metric MDS to Dγ
t with Y ′ as an initialization

Results in real data
We applied DIG to EEG data provided by [6, 2]. The data is labeled with one of six sleep categories according to R&K rules
(REM, Awake, S-1, S-2, S-3, S-4). Due to the lack of observations in some stages, we group S-1 with S-2, and S-3 with S-4.
We band-filtered the data between 8-40 Hz, and down-sampled it to 128Hz.
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Figure 3: (A) Shows the embeddings obtained by the mahalanobis distance (3), for different values of γ. Additionally, we compare the relative local and
global distortion of the embeddings, measured by the Trustworthiness and the Mantel test respectively. The same is replicated in (B) but for the

gaussian information distance (4).

Figure 4: Visualization of EEG data colored by time steps using distance
(3) at the left, and distance (4) at the right. Here we see how the left

visualization presents a more denoised version, with clearer time-evolving
transitions.

• In Figure 3 (A), higher values of γ show the central struc-
ture of the embeddings more clearly defined than when us-
ing DM or lower values of γ.
• In Figure 3 (B), the traditional DM tends to condense the
structure together, and the use of the alternative γ values
may reveal more details of the structure of the data. The
most left embedding is a clear representation of such a sit-
uation, where DM does not show a suitable discrimination
of the sleep stages. But when the value of gamma is in-
creased, a more suitable representation is achieved.

Conclusions
• We derived a manifold learning tool called DIG for visualizing dynamical processes based on a diffusion framework. We
addressed some of the shortcomings of the traditional diffusion maps approach for visualization.
•We presented experimental results where we were able to discover sleep dynamics using solely EEG recordings, as well as
the time-varying progress of the processes.
•We presented a new group of distances in the context of diffusion operators.
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