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Introduction Information Distances
Manifold learning techniques have become of great interest when studying high DIG extracts the information from the diffusion operator by em- Additionally, the rows of the diffusion matrix /2 can be in-
dimensional data. bedding an information distance. We focus on a broad family of terpreted as multinomial distributions. The geodesic dis-
e Usually, the data have an extrinsic dimensionality that is artificially high, while information distances that are parametrized by : tance between them using the Fisher information as the
its intrinsic structure is well-modeled as a low-dimensional manifold plus noise. Riemannian metric is as follows:
e Following the same line of reasoning, dynamical systems and time series can r ; L \9
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> Algorithm 1 The DIG algorithm
Figure 1: The process can be visualized in a low dimensional representation in the space of Input: Data matrix X, neighborhood size £, locality scale «, time windows length L; and Ls, number of bins Nb, information parameter ~, desired
some underlying parameters @ driving the system. The figure shows a 12-dimensional embedding dimension m (usually 2 or 3 for visualization)
dynamical system. And the goal is to represent time windows of the data as points in a Output: The DIG embedding Y,
low-dimensional manifold. 1: d <— compute pairwise distance matrix from X using the mahalanobis distance (3)
Contributions: 2. K} o < compute local affinity matrix from d and oy,

. P < normalize K, , to form a Markov transition matrix (diffusion operator)
. t < compute time scale via Von Neumann Entropy [3]

e A novel manifold learning technique for dynamical systems called j
5: Diffuse P for ¢ time steps to obtain P!
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DIG (Dynamical information geometry).
e Incorporation of a novel group of distances in the context of
diffusion operators.

. D] + compute the information distance matrix in eq. 5 from P! for the given v
. Y’ < apply classical MDS to D)
. Y, < apply metric MDS to D, with Y as an initialization
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Manifold Learning with Diffusion Operators

Results in real data

The use of diffusion operators in manifold learning was first introduced in Diffusion
Maps [1]. Recently, more suited algorithms for visualization have been presented,
such as PHATE [3]:

We applied DIG to EEG data provided by [6, 2]. The data is labeled with one of six sleep categories according to R&K rules
(REM, Awake, S-1, S-2, S-3, S-4). Due to the lack of observations in some stages, we group S-1 with S-2, and S-3 with S-4.
We band-filtered the data between 8-40 Hz, and down-sampled it to 128Hz.
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Figgre 2. PHATE steps..1. Cpmpute the distances bet\_/veen observatigns, typically the euclidean DM y=-1 — PHATE Geodesio Distahoes
distance is employed in this step. 2. Apply an adaptive kernel function to d(x;, x;), and then
row-normalize it to create a row stochastic matrix called the potential operator. 3. Diffuse the Y
potential operator ¢-steps forward. 4., Compute an information distance between the rows of P.
Finally in 5, apply metric MDS to D ,. .
e Diffusion Maps encapsulates the information in many dimensions.
e PHATE captures information in fewer dimensions = better for visualization. Figure 3: (A) Shows the embeddings obtained by the mahalanobis distance (3), for different values of v. Additionally, we compare the relative local and
g ) global distortion of the embeddings, measured by the Trustworthiness and the Mantel test respectively. The same is replicated in (B) but for the

gaussian information distance (4).

. - . - A e In Figure 3 (A), higher values of v show the central struc-
Diffusion with Dynamlcal Systems ) b ture of the embeddings more clearly defined than when us-
. . ST ing DM or lower values of .
In the context of dynamical systems we learn the local structure by constructing RS T J L7 OF owet vaues of 'y
. . . . i T S B £ R e In Figure 3 (B), the traditional DM tends to condense the
a matrix that encodes the local distances between time windows of data. SO SRR B 3 e .
Sl b g sy e structure together, and the use of the alternative v values
: T T may reveal more details of the structure of the data. The
State-space formalism: L. . .
most left embedding is a clear representation of such a sit-
T = Y (0) + & (1) Figure 4: Visualization of EEG data colored by time steps using distance | uation, where DM does not show a suitable discrimination
i il i (3) at the left, and distance (4) at the right. Here we see how the left of the sleep stages. But when the value of gamma is in-
do, = a’(0,)dt + dw;, 1 =1,...,d. (2) A . e . . , S _
visualization presents a more denoised version, with clearer time-evolving | creased, a more suitable representation is achieved.
transitions.

e p(x|0) is a linear transformation of p(y|0)
New feature space, obtained by the histogram bins of the data within time win-

dows of length L centered at a;:
xr; = h, Conclusions

e We derived a manifold learning tool called DIG for visualizing dynamical processes based on a diffusion framework. We
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e The expected value of the histograms, e.g. E(h‘g ), is a linear transformation of addressed some of the shortcomings of the traditional diffusion maps approach for visualization.

p(a:\@) e \We presented experimental results where we were able to discover sleep dynamics using solely EEG recordings, as well as
e The Mahalanobis distance is invariant under linear transformations. the time-varying progress of the processes.

—> Distance (3) is noise resilient [4, 5] e We presented a new group of distances in the context of diffusion operators.
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d*(@;, @) = (E(hy) — E(hy)" (Cy) ™ (E(hy) — E(hy)), (3)
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