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Motivation

Pollution has become an important concern in today’s world.

short-term
effects

exacerbation ...
of asthma

cough, wheezing -,
and shortness |
of breath

episodes of high air
pollution increase
respiratory and and
cardiovascular hospital
admissions and mortality

Global warming Health problems

Trees killed
by acid
rain




Challenges

Air pollution varies with location and time.
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It is essential to have a separate solution for each location.
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Challenges

There exist various outliers when pollution increases/decreases.

Forest fires Festivals

~arm burning




Problem Statement

Given the input heterogenous urban dataX = {zM) 2 ..  2T-D zD1 , the
predictive model should learn a function F': X — Y that maps |t to the set of
future pollution concentration and levels y = {y(T+1) (T+2)  T+N-1) o(T+N)1.
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How can we learn such a function to predict multiple pollutants
concentration and levels?




Difference from Existing models

Our pollution prediction task requires a model that can handle sequentially streaming
data and perform adaptive updates.

---------------

Predictions

- Model

It is difficult to solve this problem using any existing methods for Delhi due to lack of
accurate data and scalability 7
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The Components of Proposed Approach

Vayuanukulani consists of Offline Training module and an Online Interface module
to output the pollutants levels and concentration.
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Offline Training

Offline Training module extracts features from the collected historical data to
predict the pollutants level and concentration using our proposed model.
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Online Inference

Online Interfaces updates the historical data every hour and the model every week.
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The Proposed Mode|

Our proposed model consists of a Bi-LSTM with attention module.

Att?]ntlo Attention
. . . Further learning using
. | BH-LSTM Bi-LSTM ererens Bi-LSTM (optional)

Prediction results

Learning Spatial-
Temporal features

Spatial time series
inputs (direct and
indirect parameters)
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The Proposed Mode|

The trained model is updated every week using the proposed adaptive-learning
approach.

Algorithm 1 Algorithm for proposed adaptive method
I: Inputs: Data for each Tocation { f1: Possedinans ) and
learning rate o = 1073,

2: Initialize F'(x) = BiLSTM model with attention mecha-
nism for N pollutants.

3: fort«+1..7 do

4:  Receive instance: ;.

5. Predict y; for each pollutant for the next 24 hours.

6:  Receive the true pollutant value ;.

7. Suffer loss: l;(w;) which is a convex loss function on

both w, T 2 and Ut
8:  Update the prediction model w; to wy41.
9: end for
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Experiments: Dataset

The collected dataset consists of direct (air pollutants) and indirect (meteorological
data and time) for 3 years.
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Experiments: Baselines

We experiment our Vayuanukulani against several baselines.
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Results

Our model outperforms the baselines for both the pollution levels and pollutants
concentration prediction task.

TABLE I: Performance comparison of the proposed model with
other basgline models for pollution values forecasting for future 4
hours on the basis of R-squared values and Root mean square error
values. The highlighted values indicates the best performance.

TABLE II: Performance comparison of the proposed model with
other basgline models for pollution levels forecasting for future 4
hours on the basis of Accuracy, average precision and average recall.
Higher values of accuracy, precision and recall indicates the better
performance of the model. The highlighted values indicates the best

performance.
Model Pollutants | R-square | RMSE
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Results

Also, our proposed adaptive approach outperforms our standard proposed model.
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Our model is able to predict multiple pollutants successfully.
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User Interface

Also, we provide an user-interface as a Progressive Web Application (PWA) to
display the predicted results.

Pollution Home
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Conclusion

We propose a novel end-to-end adaptive system that leverages heterogonous
urban data to predict pollution concentrations and levels.

Vayuanukulani learns general importance by considering the relative importance
of incoming streaming data using the attention mechanism in order to provide
accurate predictions.

Results show that our model leverages the incoming information and improves
predictions for all the pollutants over time.

We believe that our work can be an

Code available at github.com/divyam3897/VayuAnukulani
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Thank you for listening!
Questions?
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