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ABSTRACT
Brain tumor can be a fatal disease in the world. With the aim
of improving survival rates, many computerized algorithms
have been proposed to assist the pathologists to make a di-
agnosis, using Whole Slide Pathology Images (WSI). Most
methods focus on performing patch-level classification and
aggregating the patch-level results to obtain the image classi-
fication. Since not all patches carry diagnostic information,
it is thus important for our algorithm to recognize discrimina-
tive and non-discriminative patches. In this study, we propose
an iterative patch labelling algorithm based on the Convolu-
tional Neural Network (CNN), with a well-designed thresh-
olding scheme, a training policy and a novel discriminative
model architecture, to distinguish patches and use the dis-
criminative ones to achieve WSI-classification. Our method is
evaluated on the MICCAI 2015 Challenge Dataset, and shows
a large improvement over the baseline approaches.

Index Terms— Iterative patch labelling, brain cancer,
WSI, discriminative patches, classification

1. INTRODUCTION

In recent decades, brain tumors have become a serious health
issue around the world [1]. In order to improve the survival
rate of brain cancer, early and accurate diagnosis of brain can-
cer is essential. With the rapid development of machine learn-
ing and computer vision techniques, automated and comput-
erized methods have emerged to assist human pathologists
in the interpretation of pathology images and the diagnostic
decision-making process. However, compared to other clas-
sification tasks, computational cost is an important factor to
address in classifying high resolution pathology images, such
as the gigapixel Whole Slide Pathology Images (WSI).

Most existing approaches perform the classification at
patch-level then aggregate the patch classification outputs to
obtain the image-level label [2, 3, 4, 5, 6, 7, 8]. Fig. 1 is an
example of patch subsetting. The main drawback of these
approaches is that the patches are assigned the same label as
the image containing these patches since the datasets typi-
cally only provide image-level labels. This label propagation,

Fig. 1. Patches of size 500 by 500 extracted from a brain
astrocytoma WSI of size 28500 by 19500, at 40X resolution
scale.

however, is incorrect because only a small area of the image
would exhibit tumor features and most of the patches would
be normal tissue. Training a classifier by treating all the
patches with the image label would thus become an ill-posed
problem.

To address this issue, a coarse-to-fine approach has re-
cently been proposed [9]. It generates a set of discriminative
tiles containing the most representative morphological fea-
tures of entire dataset by applying clustering techniques. This
pipeline increased the processing speed greatly and achieved
highly accurate classification. However, this method requires
hand-crafted features, which might not extend well to other
tumor types. Another related work is to train a patch-level
convolutional neural network (CNN) to select discrimina-
tive patches by using the Expectation-Maximum (EM) al-
gorithm [10]. The experiments show the great contribution
made by discriminative patches to image-level classification.
However, the network model is only trained on discriminative
patches recognized, and we found based on our experiments
that this design would trap the classifier into a local minimum
easily, where the classifier cannot differentiate the tumor
subtypes with heterogeneous features leading to difficulty in
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reaching convergence, especially for small datasets.
In this study, we propose an iterative patch labelling al-

gorithm to recognize discriminative and non-discriminative
patches, with the aim of addressing the image-label-only is-
sue. To make use of non-discriminative patches, we define the
non-discriminative patches first, and then propose a thresh-
olding scheme and a training policy for our iterative algo-
rithm. We also design a novel model architecture, which is
a feedforward neural network with N-branch outputs corre-
sponding to N tumor classes, to calculate the discriminative
probabilities for branches more independently. Our method
is applied to classify WSIs of brain astrocytoma and oligo-
dendroglioma using the MICCAI 2015 Challenge Dataset and
the results show large improvement over the benchmark tech-
niques.

2. METHODS

In this section, we provide details of our proposed method.
Visual illustration is shown in Fig. 2.

2.1. Patch Subsetting

Considering the massive size of a WSI, patch subsetting is an
essential step to be achieved in the data preprocessing pro-
cess. Otsu’s method is first applied on the thumbnails, to
generate the binary masks distinguishing between tissue and
background [11]. Then non-overlapping patches of size 500
by 500 are extracted, at 40X (0.25 microns per pixel) resolu-
tion scale. Invalid patch is discarded if it contains less than
80% tissue sections. There would be roughly 0.3K-15K valid
patches extracted per WSI.

2.2. Feature Extraction

We extract the patch-level features by fine-tuning the VGG19
model that is pre-trained on ImageNet [12, 13]. Due to the
overfitting concerns, we set the first 3 convolutional blocks as
non-trainable and fine-tuned the last 2 convolutional blocks
on our training dataset for a few iterations. After fine-tuning,
all fully-connected layers are removed and a two-dimension
global MaxPooling layer is added at the end, so that it can
generate the 512D-visual-feature-code for each input patch.

2.3. EM-based Iterative Patch Labelling

We define discriminative patches to class K (Dis-to-K) as the
patches containing the representative features of cancer class
K and non-discriminative patches (Non-Dis) as the patches
that do not cover distinguishable features of any target cancer.

Our model is expected to perform classification for N dif-
ferent classes, and each patch X will be associated with N
discriminative probabilities and P(X, K) represents the prob-
ability that patch X contains representative features of class
K. Although patch label information is missing initially, each

patch X would eventually be assigned as either Dis-to-K or
Non-Dis at the end. Specifically, a patch X will be recognized
as: (1) Dis-to-K if P(X, K) is the highest value among all P(X,
Q) for all target class Q and P(X, K) is greater than 0.5. (2)
Non-Dis if P(X, Q) is less than or equal to 0.5 for all target
classes Q.

Our iterative patch labeling algorithm is designed to iden-
tify the Dis-to-K patches while performing patch classifica-
tion simultaneously in an EM construct, which is summarized
in Algorithm 1, and the details are given in the following sub-
sections.

Algorithm 1 Iterative Patch Labelling Algorithm
procedure

Initialize discriminative model D
Assign all patches X with WSI-level labels
while convergence C is not reached do

[M-step]
Use X and their current labels L to train D

[E-step]
Use D to calculate P(X, K) for each X with class K
Generate the possibility maps PMap for each WSI
Apply Gaussian Smoothing on PMap
Apply Thresholding Scheme on PMap
Update L

Save D architecture and its weights

2.3.1. Initialization

We first design a feedforward neural network as the discrimi-
native model D for our algorithm. It contains 3 blocks and
each block includes a dense layer, a Rectified Linear Unit
(ReLU) layer and a Dropout layer. The neuron number for
each dense layer is 256, which is the half of the length of
patch features, and the dropout rate is 50%. To produce the
discriminative probabilities P(X, K) for N classes more in-
dependently, the traditional output layer is modified from 1-
branch output to N-branch outputs. Those N branches are
separated after the last Dropout layer and not sharing weights
with others. The loss function of each branch is binary cross-
entropy, since the Kth-branch output can only be 0 or 1, in-
dicating whether the input patch contains representative fea-
tures of class K.

At the initial stage, all patches X are assumed to be dis-
criminative to their image-level labels. The initial ground
truth label L(X, K) at K-th branch output is set to 1 if class K
is the image-level label of X and to 0 otherwise. Take binary
classification between class-1 (corresponds to 1th-branch)
and class-2 (corresponds to 2th-branch ) as an example, the
initial label vector for patches from class-1 WSI and class-2
WSI would be [1, 0] and [0, 1] respectively and Non-Dis
patches would be labelled as [0, 0] in the training process.



Fig. 2. Proposed pipeline.

2.3.2. Maximization (M) and Expectation (E) Steps

In Maximization (M) stage, all patches X with their current
labels L, are used to train the discriminative model D for
2 epochs. The optimizer for our network is Adam and the
total loss is the sum of each branch loss computed individ-
ually. In Expectation (E) step, the discriminative model D
produces the up-to-date discriminative probability P(X, K)
for all combination of patch X and class K. Those P(X, K)
are used to generate the WSI-level probabilities map PMap.
The map PMap includes N channels, corresponding to the
N target classes. Then Gaussian smoothing is applied on
each channel of PMap, considering the spatial relationship
between patches. Finally, a special thresholding scheme is
utilized on PMap to update their patch-level labels, which
will be explained in detail in Section 2.3.3.

2.3.3. Thresholding Scheme

We introduce HK as the sorted list containing the probabil-
ities of all patches whose image-level label is class K. Then
we define T as the thresholding percentage and SK as the T-th
percentile of HK . Hence, given a patch X, if its image-level
label is class K and correspondingly the other classes are R,
then the thresholding scheme and its patch-level label updat-
ing would be performed by Formula 1. T is set to 0.7 in our
pipeline.

Relabel X as


Non-Dis if P (X,K) ≤ SK

and P (X,R) ≤ 0.5

Dis-to-K else
(1)

2.3.4. Training Policy

We design a new training policy to use Non-Dis patches for
next training iteration, along with all Dis-to-K patches. Al-

though the Non-Dis patches will not be considered in WSI-
level classification, the Non-Dis patches found in training pro-
cess can benefits the recognition of Dis-to-K patches, by nar-
rowing down the set of possibly discriminative patches and
the algorithm can therefore concentrate on the difference be-
tween the patches discriminative to different classes. This
benefit enhances the discriminative ability of the model and
make it easier to reach the convergence, which will be ex-
plained in more detail in Section 3.2.

2.4. WSI-level Classification

When the convergence is reached by early stopping, the patch
class distribution of WSIs can be computed easily. The Non-
Dis patches are ignored at this stage and the label histograms
of Dis-to-K patches are used to train another SVM classifier
that learns the WSI-level decision fusion function [14], with
the aim of increasing the classification robustness.

3. EXPERIMENTS AND RESULTS

3.1. Dataset and Setup

We performed four-fold cross validation to estimate our pro-
posed method on CBTC dataset, which belongs to MICCAI
2015 Challenges. Lower grade glioma is a primary type of
brain cancer, and the main challenge of the CBTC dataset
is to classify astrocytoma and oligodendroglioma, which are
the two most common subtypes of lower grade gliomas [15].
Owing to the high similarity of their morphological features,
this classification task is hard to complete precisely even
for pathologists [16]. Moreover, this dataset contains 32
whole slide pathology images (16 Astrocytoma cases and 16
Oligodendroglioma cases), with only image-level labels re-
leased. To alleviate the imbalanced effects caused by varying
number of valid patches extracted from each WSI, three data



augmentation techniques are randomly applied in the training
process, namely flipping tiles horizontally/vertically, shear-
ing tiles at a random angle between 0.1 radians clockwise to
0.1 radians anti-clockwise, and rotating tiles 90, 180 and 270
degrees respectively.

3.2. Contribution of Non-Dis Patches

One of the uniquenesses of our pipeline is to make use of
Non-Dis patches, whose importance is usually ignored by
other approaches [9, 10]. As illustrated in Fig. 3, with the
help of Non-Dis patches, the iterative training can gradually
converge and identify the real discriminative patches effec-
tively. If Non-Dis patches are simply discarded during the
iterative training, the network would have difficulty converg-
ing and the patches would keep oscillating between Dis-to-A
and Dis-to-O, as shown in Fig. 4.

Fig. 3. The patch labelling visualization of an astrocytoma
instance with our proposed training policy. The visualization
scheme utilized: Blue for Non-Dis patches, red for Dis-to-O
patches and green for Dis-to-A patches. The first subplot is
the thumbnail of WSI, and other are captured at 1st, 5th, 6th,
100th and 293th (the last) iteration respectively.

Fig. 4. The patch labelling visualization of same instance as
shown in Fig.3. Same experiment setting and pipeline, with
Non-Dis patches excluded from training set. They are cap-
tured at 1st, 5th, 6th, 98th and 99th and 100th (the pre-set
maximum) iteration respectively.

3.3. Classification Results

The classification results are presented in Table 1. We com-
pared the performance on the MICCAI 2015 Challenge
Dataset between the following approaches: (1) CNN-Feat-
SVM: We employ a pre-trained VGG19 to extract features
and produce patch labels and then train a SVM to learn the
WSI-level decision fusion function. (2) Finetune-CNN-Feat-
SVM: Similar to (1) except the fine-tuning for VGG19 is
performed. In these two approaches above, patches are as-
signed the same label as the WSI containing these patches.

(3) Iter-Finetune-CNN-SVM[Discriminative]: The training
of VGG19 is completed in an EM construct, where the patch
label updates iteratively and only the latest discriminative
patches would be used for next training iteration. (4) Iter-
Finetune-CNN-SVM[Both]: Our proposed pipeline, which
makes use of non-discriminative patches, achieved the best
performance.

Methods Acc.

CNN-Feat-SVM 62.50%
Finetune-CNN-Feat-SVM 69.13%
Iter-Finetune-CNN-SVM[Discriminative] 76.62%
Iter-Finetune-CNN-SVM[Both] 84.38%

Table 1. Classification results between astrocytoma and
oligodendroglioma.

3.4. ROIs Visualization

With post-processing, the regions of interest (ROIs), which
consist of the discriminative patches that are identified and
used in the final WSI-level classification, can be visualized in
Fig. 5.

Fig. 5. Two testing WSI instances with ROIs marked.

4. CONCLUSIONS

In this study, we proposed a method to address the Whole
Slide Pathology Images (WSI) classification challenge with
only image-level labels provided, by designing an iterative
patch labelling algorithm to recognize discriminative and
non-discriminative patches. Our method achieved the best
classification performance of 84.38% on the MICCAI 2015
Challenge Dataset. By identifying the discriminative patches,
our model could produce a more explainable and reliable
classification results, which are valuable to human patholo-
gists in the diagnosis decision-making process. Furthermore,
our approach demonstrates the importance of recognizing
non-discriminative patches in image classification tasks.
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