WHAT MAKES THE SOUND?: A DUAL-MODALITY INTERACTING NETWORK FOR AUDIO-VISUAL EVENT LOCALIZATION

Janani Ramaswamy
Dept. of CS & E, IIT Madras, Chennai-600036, India
Can’t machines mimic humans in using both audio and video for decision making?
CHALLENGES
➢ Audio may not always be in perfect sync with the video

➢ Presence of ambient sound like breeze

➢ Object making the sound being momentarily occluded in the video

➢ Obtaining the semantics is less direct in case of audio\(^1\).

Supervised event localization:
Training: event label given for every segment
Testing: predict event category for every segment

Weakly-Supervised event localization:
Training: event label given for whole video
Testing: predict event category for every segment
APPLICATIONS
➢ Audio-based video captioning
➢ Audio-based video segmentation
➢ Surveillance
➢ Enhanced scene understanding
EXISTING WORKS

<table>
<thead>
<tr>
<th>Tian et al. ECCV 2018 ¹</th>
<th>Wu et al. ICCV 2019 ³</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Audio-visual event localization in unconstrained videos</td>
<td>- Dual Attention Matching (DAM)</td>
</tr>
<tr>
<td>- Audio-Visual Event (AVE) dataset</td>
<td>- Encodes temporal co-occurrence between auditory and visual signals</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lin et al. ICASSP 2019 ²</th>
<th>Ramaswamy & Das WACV 2020 ⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Audio-Visual seq2seq dual n/w (AVSDN)</td>
<td>- Spatial & Segment-wise attention using two novel blocks</td>
</tr>
<tr>
<td>- learns global and local event info in seq2seq manner</td>
<td>- A novel loss function for unsupervised sound localization</td>
</tr>
</tbody>
</table>

MAJOR CONTRIBUTIONS

Audio-Visual Interacting Network (AVIN) for fully & weakly supervised audio-visual event localization

A novel audio-visual fusion that captures the inter and intra modality interactions using local and global information from the two modalities

Our method significantly outperforms the existing state-of-the-art methods
PROPOSED ARCHITECTURE
Audio-Visual Interacting Network (AVIN)

• Feature Extraction: Let $F_t^a \in \mathbb{R}^{d_a}$ and $F_t^v \in \mathbb{R}^{d_v}$ denote the audio and visual features extracted using CNNs. Here, d_a and d_v refer to the dimension of audio and visual features respectively.

• Modeling temporal dependency: The features $\{F_t^a, F_t^v\}_{t=1}^{\mathcal{T}}$ extracted from the CNNs are then fed to two different LSTMs, the result of which is denoted as $\{h_t^a, h_t^v\}_{t=1}^{\mathcal{T}}$.

• \mathcal{T} here denotes the number of non-overlapping segments ($= 10$ in our case) that each video is split into.
CAPTURING BILINEAR INTERACTIONS

[Diagram showing a network of neural network components including CNN, LSTM, dropout, sum pooling, normalization, and event category inputs and outputs.]
Bilinear Pooling for audio-visual fusion

• Consider a multi-modal bilinear model:
 \[\tilde{z}_t = F_t^v W_i F_t^a \]
 \[\text{----------- (1)} \]
 where, \(W_i \in \mathbb{R}^{d_v \times d_a} \) is the projection matrix and \(\tilde{z}_t \) is a scalar.

• To get a \(p \)-dimensional output, we use \(W = [W_1, ..., W_p] \in \mathbb{R}^{d_v \times d_a \times p} \)

• But this leads to a large number of parameters and high computational cost.

• Multi-modal Factorized Bilinear (MFB) Pooling\(^1\) factorizes \(W \) into two low-rank matrices:
 \[\tilde{z}_t = \text{Sumpooling}(U^T F_t^v \circ V^T F_t^a, q) \]
 \[\text{----------- (2)} \]

• Applying power and L2 normalization:
 \[z'_t = \text{sign}(\tilde{z}_t)|\tilde{z}_t|^{0.5}; z_t = z'_t/||z'_t|| \]
 \[\text{----------- (3)} \]

Where, \(U \in \mathbb{R}^{d_v \times (qp)} \) and \(V \in \mathbb{R}^{d_a \times (qp)} \) are the two low rank matrices.
\(\circ \) refers to the Hadamard product and \(q \) represents the latent dimensionality.

Capturing inter and intra modality interactions
Capturing inter and intra modality interactions

• To get a better idea about the amount of synchronization present between the two modalities, the global information also needs to be considered.
• We use self and collaborative attention\(^1\) to capture intra and inter modality interactions.
• **Intra-modality interactions:**

\[
s_t^a = \text{Softmax} (h_t^a \odot \overline{h}_{ave}^a) \otimes h_t^a \tag{4}
\]
\[
s_t^v = \text{Softmax} (h_t^v \odot \overline{h}_{ave}^v) \otimes h_t^v \tag{5}
\]

• **Inter-modality interactions:**

\[
c_t^a = \text{Softmax} (h_t^a \odot \overline{s}_{ave}^v) \otimes h_t^a \tag{6}
\]
\[
c_t^v = \text{Softmax} (h_t^v \odot \overline{s}_{ave}^a) \otimes h_t^v \tag{7}
\]

where,

- \(h_t^a, h_t^v\) - temporally encoded features from LSTMs
- \(\overline{h}_{ave}^a, \overline{h}_{ave}^v\) - outputs of mean pooling applied on \(h_t^a, h_t^v\)
- \(s_t^a, s_t^v\) - features encoded with **intra**-modality interactions
- \(c_t^a, c_t^v\) - features encoded with **inter**-modality interactions
- \(\overline{s}_{ave}^a, \overline{s}_{ave}^v\) - outputs of mean pooling applied on \(s_t^a, s_t^v\)

\(\odot\) - dot product
\(\otimes\) - element-wise multiplication

\(^1\) Zhang et al., Scan: Self-and-collaborative attention network for video person re-identification, TIP 2019.
DATASET USED

Audio-Visual Event (AVE) Dataset\(^1\)

- 4143 videos (min 2s long event; max 10s long event)
- 28 event categories
- Minimum of 60 and maximum of 188 videos in each category
- Labels available video-wise as well as segment-wise (i.e., temporally labeled) with audio-visual event boundaries.

RESULTS (PERFORMANCE COMPARISON IN %)

<table>
<thead>
<tr>
<th>Method</th>
<th>Sup. Acc.</th>
<th>W-Sup. Acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>62.3</td>
<td>57.0</td>
</tr>
<tr>
<td>Visual</td>
<td>57.4</td>
<td>53.8</td>
</tr>
<tr>
<td>AVE(^1)</td>
<td>72.7</td>
<td>66.7</td>
</tr>
<tr>
<td>AVSDN(^2)</td>
<td>72.8</td>
<td>66.5</td>
</tr>
<tr>
<td>DAM(^3)</td>
<td>74.5</td>
<td>-</td>
</tr>
<tr>
<td>Ramaswamy & Das(^4)</td>
<td>74.8</td>
<td>68.9</td>
</tr>
<tr>
<td>AVIN (Ours: Aud + Vis)</td>
<td>75.2</td>
<td>69.4</td>
</tr>
</tbody>
</table>

RESULTS (DIFFERENT FUSION STRATEGIES)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Element-wise multiplication</td>
<td>60.3</td>
<td>55.1</td>
</tr>
<tr>
<td>Element-wise addition</td>
<td>63.4</td>
<td>58.2</td>
</tr>
<tr>
<td>Concatenation + FC</td>
<td>65.7</td>
<td>60.3</td>
</tr>
<tr>
<td>AVIN (Ours)</td>
<td>75.2</td>
<td>69.4</td>
</tr>
</tbody>
</table>
ABLATION STUDY

<table>
<thead>
<tr>
<th>Model</th>
<th>Sup. Acc.</th>
<th>W-Sup. Acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only LSTM</td>
<td>70.1</td>
<td>63.8</td>
</tr>
<tr>
<td>Only MFB(^1)</td>
<td>71.4</td>
<td>66.7</td>
</tr>
<tr>
<td>LSTM + intra-mod</td>
<td>71.2</td>
<td>65.4</td>
</tr>
<tr>
<td>LSTM + intra + inter-mod</td>
<td>73.5</td>
<td>67.9</td>
</tr>
<tr>
<td>LSTM + MFB + intra+ inter-mod</td>
<td>75.2</td>
<td>69.4</td>
</tr>
</tbody>
</table>

Bar chart depicting accuracies of a few selected event categories for supervised event localization task.
Output of a few segments shown for our proposed method of supervised event localization, given an input video.
THANK YOU!

JANANI RAMASWAMY
(Research Scholar, IIT Madras)

Visualization and Perception Lab – www.cse.iitm.ac.in/~vplab