Distributed Online Learning with Adversarial Participants in An Adversarial Environment

Xingrong Dong1 Zhaoxian Wu1 Qing Ling1 Zhi Tian2

1Sun Yat-Sen University

2George Mason University

2023 IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE ICASSP 2023)
Online Learning

- Online learning is a powerful tool to process *streaming data*.
- In response to an environment that provides *(adversarial) losses* sequentially, an online learning algorithm makes one-step-ahead decisions.

Distributed Online Learning

- *Multiple participants* separately collect streaming data, make local decisions.
- *Server aggregates* all local decisions to a global one.
- Applications: online web ranking and online advertisement recommendation.

Performance of an online learning algorithm is characterized by *(adversarial)* regret, and a *sublinear (adversarial)* regret is preferred.
Background

But not all participants are honest.

Byzantine Attack

Adversarial participants (called Byzantine participants) can collude and arbitrarily modify the messages sent to the server.

Is it possible to develop a Byzantine-robust distributed online learning algorithm with provable sublinear adversarial regret, in an adversarial environment and in the presence of adversarial participants?

Answer Is Negative

✗ Distributed online gradient descent with mean: infinite adversarial regret.
✗ Even with robust aggregation rules: linear adversarial regret.
Problem Statement: Adversarial Regret

- Consider n participants in \mathcal{N}, h honest in \mathcal{H}, b Byzantine in \mathcal{B}, $n = h + b$.
- Suppose the ratio of Byzantine participants is less than half: $\alpha := \frac{b}{n} < \frac{1}{2}$.
- **Goal:** minimize adversarial regret over T steps

$$R_T := \sum_{t=1}^{T} f_t(w_t) - \min_{w \in \mathbb{R}^d} \sum_{t=1}^{T} f_t(w), \tag{1}$$

where

$$f_t(w) := \frac{1}{h} \sum_{j \in \mathcal{H}} f_t^j(w), \tag{2}$$

and f_t^j is the loss revealed to $j \in \mathcal{H}$ at the end of step t.
Each honest participant j makes its local decision by **online gradient descent**:

$$w_{t+1}^j = w_t - \eta_t \nabla f_t^j(w_t), \quad \text{step size } \eta_t > 0.$$

Baseline: distributed **online gradient descent** (3) with mean aggregation

Server aggregates messages z_{t+1}^j (w_{t+1}^j from honest and arbitrary from Byzantine)

$$w_{t+1} = \frac{1}{n} \sum_{j=1}^{n} z_{t+1}^j.$$

Ours: Byzantine-robust distributed **online gradient descent** (3) with **AGG**

$$w_{t+1} = \text{AGG}(z_{t+1}^1, z_{t+1}^2, \cdots, z_{t+1}^n).$$

AGG is Robust Bounded Aggregation, if

$$\|w_{t+1} - \bar{z}_{t+1}\|^2 = \|\text{AGG}(z_{t+1}^1, z_{t+1}^2, \cdots, z_{t+1}^n) - \bar{z}_{t+1}\|^2 \leq C_\alpha^2 \zeta^2,$$

where $\|\bar{z}_{t+1} - z_{t+1}^j\|^2 \leq \zeta^2$, C_α is a constant dependent on α and aggregation.
Assumptions & Theorem 1

Define \(\nabla \bar{f}_t(w_t) := \frac{1}{h} \sum_{j \in \mathcal{H}} \nabla f^j_t(w_t) \) and \(w^* := \arg \min_{w \in \mathbb{R}^d} \sum_{t=1}^{T} f_t(w) \). For any honest participant’s loss \(f^j_t \) where \(j \in \mathcal{H} \) and any \(x, y \in \mathbb{R}^d \) we assume

Assumption 1 \(L \)-smoothness. \(\| \nabla f^j_t(x) - \nabla f^j_t(y) \| \leq L \| x - y \| \).

Assumption 2 \(\mu \)-strong convexity. \(\langle \nabla f^j_t(x), x - y \rangle \geq f^j_t(x) - f^j_t(y) + \frac{\mu}{2} \| x - y \|^{2} \).

Assumption 3 Bounded deviation. \(\| \nabla f^j_t(w_t) - \nabla \bar{f}_t(w_t) \|^2 \leq \sigma^2 \).

Assumption 4 Bounded gradient at the overall best solution. \(\| \frac{1}{h} \sum_{j \in \mathcal{H}} \nabla f^j_t(w^*) \|^2 \leq \xi^2 \).

Theorem 1

Under Assumptions 1, 2, 3 and 4, if \(\eta = \mathcal{O}(\frac{1}{\sqrt{T}}) \), Byzantine-robust distributed online gradient descent has a **linear** adversarial regret bound

\[
R_T = \mathcal{O}((C^2_\alpha \sigma^2 + \xi^2)\sqrt{T}) + \mathcal{O}(C^2_\alpha \sigma^2 T).
\]

We construct a counter-example to demonstrate \(\mathcal{O}(\sigma^2 T) \) is tight.

How to derive sublinear regret under Byzantine Attacks?

\(\rightarrow \) Not fully adversarial environment.
Not fully adversarial environment: losses are independent and identically distributed (i.i.d.), meaning $f^j_t \sim D$ for all $j \in \mathcal{H}$ and all t.

Define the expected loss $F(w) := \mathbb{E}_D f^j_t(w)$ for all $j \in \mathcal{H}$ and all t.

New Goal: minimize stochastic regret over T steps

$$S_T := \mathbb{E} \sum_{t=1}^{T} F(w_t) - T \cdot \min_{w \in \mathbb{R}^d} F(w).$$ (7)

Each honest participant j maintains a momentum vector to reduce variance

$$m^j_t = \nu_t \nabla f^j_t(w_t) + (1 - \nu_t) m^j_{t-1},$$ (8)

where $0 < \nu_t < 1$ is momentum parameter. Then, it makes a local decision

$$w^j_{t+1} = w_t - \eta_t m^j_t.$$ (9)

Ours: Byzantine-Robust distributed online momentum (9) with AGG (5).
Assumptions & Theorem 2

For expected loss $F(w)$ and any $x, y \in \mathbb{R}^d$, we assume

Assumption 5 L-smoothness. $\|\nabla F(x) - \nabla F(y)\| \leq L \|x - y\|$.
Assumption 6 μ-strong convexity. $\langle \nabla F(x), x - y \rangle \geq F(x) - F(y) + \frac{\mu}{2} \|x - y\|^2$.
Assumption 7 Bounded variance. $\mathbb{E}_D \|\nabla f^j_t(w_t) - \nabla F(w_t)\|^2 \leq \sigma^2$.

Theorem 2

Supposed losses are i.i.d., under Assumptions 5, 6 and 7, if $\eta = O\left(\frac{1}{\sqrt{T}}\right)$ and $\nu = O\left(\frac{1}{\sqrt{T}}\right)$, Byzantine-robust distributed online momentum has a sublinear stochastic regret bound

$$S_T = O\left(\left(1 + \frac{\sigma^2}{h} \left(1 + (h + 1)C_\alpha^2 \frac{L^4}{\mu^4}\right)\right)^{\sqrt{T}}\right).$$ (10)
Numerical Experiments

- Softmax regression on the i.i.d. MNIST dataset.
- Measurement: adversarial regret and accuracy.

Byzantine-robust distributed online gradient descent show robustness.

Figure 1: Performance of Byzantine-robust distributed online gradient descent.

More results and codes are available at https://github.com/wanger521/OGD.
Numerical Experiments

Momentum show improvement!

Figure 2: Performance of Byzantine-robust distributed online momentum.

More experiment results on non-i.i.d. data are shown in the paper.
Conclusion

- Investigate **Byzantine-robustness of distributed online learning** for first time.

- Show **tight linear adversarial regret** bound for Byzantine-robust distributed online gradient descent.

- Establish **sublinear stochastic regret** bound for Byzantine-robust distributed online momentum with i.i.d. distribution.

Thank You!