Submodular Maximization with Multi-Knapsack Constraints and its Applications in Scientific Literature Recommendations

Qilian Yu1 Easton Li Xu2 Shuguang Cui1

1Department of Electrical and Computer Engineering
University of California, Davis

2Department of Electrical and Computer Engineering
Texas A&M University

2016 IEEE Global Conference on Signal and Information Processing
Dec. 7, 2016
Outline

1. Introduction

2. Formulation and Main Results
 - Problem Formulation
 - Related Work and Main Results

3. Streaming Algorithm for Maximizing Monotone Submodular Functions
 - Algorithm
 - Theoretical Guarantee

4. Applications
Introduction

Background

- Main Problems in Big Data Era
 - Unprecedented large datasets.
 - Heterogenous data sources.
- Submodular Optimization
 - Rich theoretical and practical features to preprocess massive data [Liu et. al. 2013].
- Streaming Algorithms
 - Memory required for a small portion of data.
 - Solution provided at the end of data stream.
Prerequisites

- Ground set: $V = \{1, 2, \ldots, n\}$.
- Set function: $f : 2^V \rightarrow [0, \infty)$.
- Characteristic vector: $x_S = (x_{S,1}, x_{S,2}, \ldots, x_{S,n})$, where for $1 \leq j \leq n$, $x_{S,j} = 1$, if $j \in S$; $x_{S,j} = 0$, otherwise.
- Marginal gain: $\Delta_f(r|S) \triangleq f(S \cup \{r\}) - f(S)$.
 - Submodularity: $\Delta_f(r|B) \leq \Delta_f(r|A)$, for $A \subseteq B \subseteq V$ and $r \in V \setminus B$.
 - Monotone: $\Delta_f(r|S) \geq 0$, for any $S \subseteq V$ and $r \in V$.
Formulation

■ Motivation: scientific literature recommendations, new recommendations, etc.

■ **d-MASK**: Aim to **MA**ximize a monotone **S**ubmodular set function subject to a **d-K**napsack constraint.

\[
\text{maximize } \quad f(S) \\
\text{subject to } \quad Cx_S \leq b.
\]

■ \(b = (b_1, b_2, \ldots, b_d)^T \): \(d\)-dimension knapsack constraint vector.

■ \(C = (c_{i.j}) \): \(c_{i.j} > 0 \) is the weight of the element \(j \) with respect to the \(i \)-th knapsack resource constraint.

■ **d-MASK** can be easily standardized such that \(c_{i.j} \geq 1 \) and \(b_i = b \), for \(1 \leq i \leq d, 1 \leq j \leq n \).
Formulation and Main Results

Related Work and Main Results

<table>
<thead>
<tr>
<th>Best Performance Known Algorithms</th>
<th>Proposed Streaming Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Knapsack Constraint</td>
<td>$1 - \frac{e^{-1}}{n^5}$ [Sviridenko, 2004]</td>
</tr>
<tr>
<td>d-Knapsack Constraint</td>
<td>$1 - \frac{e^{-1} - \epsilon}{n^5}$ [Kulik et. al., 2009]</td>
</tr>
</tbody>
</table>

First to propose an efficient streaming algorithm for d-MASK, with

- a constant-factor approximation guarantee;
- no assumption on full access to the dataset;
- execution of a single pass;
- $O(b \log b)$ memory requirement;
- $O(\log b)$ computation complexity per element;
- only assumption on monotonicity and submodularity of the objective function.
Algorithm 1 d-KNAPSACK-STREAMING

1: $m := 0.$
2: $Q := \{ [1 + (1 + 2d)\varepsilon]^l | l \in \mathbb{Z} \}.$
3: for $v \in Q$
4: $S_v := \emptyset.$
5: for $j := 1$ to n
6: for $i := 1$ to d
7: $m := \max \{ m, f(\{j\})/c_{i,j} \}.$
8: end for
9: $Q := \{ [1 + (1 + 2d)\varepsilon]^l | l \in \mathbb{Z}, \frac{m}{1+(1+2d)\varepsilon} \leq [1 + (1 + 2d)\varepsilon]^l \leq 2bm \}.$
10: if $c_{i,j} \geq \frac{b}{2}$ and $\frac{f(\{j\})}{c_{i,j}} \geq \frac{2v}{b(1+2d)}$ for some $i \in [1, d]$ then
11: $S_v := \{ j \}.$
12: break
13: end if
14: if $\sum_{l \in S \cup \{j\}} c_{i,l} \leq b$ and $\frac{\Delta f(\{j\}|S)}{c_{i,j}} \geq \frac{2v}{b(1+2d)}$ for all $i \in [1, d]$ then
15: $S_v := S_v \cup \{ j \}.$
16: end if
17: end for
18: end for
19: $S := \arg\max_{S_v, v \in Q} f(S_v).$
20: return $S.$
Simpler Version

Algorithm 2 d-KNAPSACK-STREAMING

1: Initialize: Set Q.
2: for $v \in Q$
3: for $j := 1$ to n
4: Update Set Q.
5: if j is big element then
6: $S_v := \{j\}$.
7: break.
8: end if
9: if j satisfies criteria(v) then
10: $S_v := S_v \cup \{j\}$.
11: end if
12: end for
13: end for
14: $S := \arg\max_{S_v, v \in Q} f(S_v)$.
15: return S.
Lemma 1

Let

\[Q = \left\{ \left[1 + (1 + 2d)\epsilon \right]^l | l \in \mathbb{Z}, \frac{m}{1 + (1 + 2d)\epsilon} \leq \left[1 + (1 + 2d)\epsilon \right]^l \leq 2bm \right\} \]

for some \(\epsilon \) with \(0 < \epsilon < \frac{1}{1+2d} \). Then there exists at least some \(v \in Q \) such that \(\left[1 - (1 + 2d)\epsilon \right] \text{OPT} \leq v \leq \text{OPT} \).

Lemma 2 (Big Element)

Assume \(v \) satisfies \(\alpha \text{OPT} \leq v \leq \text{OPT} \), and there exists an element \(j \) such that \(c_{i,j} \geq \frac{b}{2} \) and \(\frac{f(\{j\})}{c_{i,j}} \geq \frac{2v}{b(1+d)} \) for some \(i \in [1, d] \).

\[f(\{j\}) \geq \frac{\alpha}{1 + 2d} \text{OPT}. \]
Submodular Maximization with Multi-Knapsack Constraints and its Applications in Scientific Literature Recommendations

Streaming Algorithm for Maximizing Monotone Submodular Functions

Theoretical Guarantee

Theorem 3

Algorithm 1 has the following properties:

- It outputs S that satisfies $f(S) \geq (\frac{1}{1+2d} - \epsilon) OPT$;

- It goes one pass over the dataset, stores at most $O\left(\frac{b\log b}{d\epsilon}\right)$ elements, and has $O\left(\frac{\log b}{\epsilon}\right)$ computation complexity per element.

Theorem 4

Consider a subset $S \subseteq V$. For $1 \leq i \leq d$, let $r_{i,s} = \Delta f(s|S)/c_{i,s}$, and $s_{i,1}, \ldots, s_{i,|V\setminus S|}$ be the sequence such that $r_{i,s_{i,1}} \geq r_{i,s_{i,2}} \geq \cdots \geq r_{i,s_{i,|V\setminus S|}}$. Let k_i be the integer such that $\sum_{j=1}^{k_i-1} c_{i,s_i,j} \leq b$ and $\sum_{j=1}^{k_i} c_{i,s_i,j} > b$. And let

$$\lambda_i = \left(b - \sum_{j=1}^{k_i-1} c_{i,s_i,j}\right) / c_{i,s_i,k_i}.$$

Then we have

$$OPT \leq f(S) + \min_{1 \leq i \leq d} \left[\sum_{j=1}^{k_i-1} \Delta f(s_{i,j}|S) + \lambda_i \Delta f(s_{i,k_i}|S) \right].$$
Scientific Literature Recommendations

Problem Setup

- **Problem setting**
 - A directed acyclic graph $G = (V, E)$ with $V = \{1, 2, \ldots, n\}$.
 - Vertex in V: an article.
 - Arc $(i, j) \in E$: paper i cites paper j.
 - A: the collection of the source papers.

- **Objective**
 - Select a subset S out of V to quickly detect the information spreading of A.
Problem Formulation

- **Measurements**
 - Length of the shortest directed path from s to a: $T(s, a)$.
 - The shortest path length from any vertex in S to a: $T(S, a) \triangleq \min_{s \in S} T(s, a)$.
 - Pre-assigned weight to each vertex $a \in A$: $W(a)$, such that $\sum_{a \in A} W(a) = 1$.
 - A given maximum penalty: T_{max}.
 - The expected penalty: $\pi(S) \triangleq \sum_{a \in A} W(a) \min\{T(S, a), T_{\text{max}}\}$.

- **Formulation**

\[
\begin{align*}
\text{maximize} \quad & R(S) \triangleq \sum_{a \in A} W(a) [T_{\text{max}} - T(S, a)]^+ \\
\text{subject to} \quad & Cx_S \leq b.
\end{align*}
\]
Experiment Setup

- Constraints Design
 - Recency
 - Biased PageRank Score [Gori & Pucci, 2006]
 - Reference Number

- Experiment Dataset [Joseph & Radev, 2007]
 - Over 20,000 papers in the Association of Computational Linguistics.
 - Citation network provided.
Applications

Experimental Results

- Sensitive Analysis Setup
 - Randomly select five nodes as the source papers.
 - Set $T_{\text{max}} = 50$ and $W(a) = 0.2$ for each source paper a.

<table>
<thead>
<tr>
<th>Fixed Constraints</th>
<th>Recency Knapsack Constraint</th>
<th>Biased PageRank Knapsack Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b_2 = 10$, $b_3 = 20$.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_1 = 20$, $b_3 = 20$.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_1 = 20$, $b_2 = 10$.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary

- The first streaming algorithm for d-MASK problem.

- Only a single pass through the dataset required.

- Approximation solution with a \(\left(\frac{1}{1+2d} - \epsilon \right) \) factor guaranteed with much lower computation cost.

- Practical and efficient way to solve related combinatorial problem, e.g., scientific literature recommendations.
Y. Liu, K. Wei, K. Kirchhoff, Y. Song, and J. Bilmes,
“Submodular feature selection for high-dimensional acoustic score spaces,”

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher,
“An analysis of approximations for maximizing submodular set functions–I,”

M. Sviridenko,
“A note on maximizing a submodular set function subject to a knapsack constraint,”

A. Kulik, H. Shachnai, and T. Tamir,
“Maximizing submodular set functions subject to multiple linear constraints,”

M. Gori and A. Pucci,
“Research paper recommender systems: A random-walk based approach,”

M. T. Joseph and D. R. Radev,
“Citation analysis, centrality, and the ACL anthology,”