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Introduction

• Linguistic studies have shown that language choice contains pointers to levels of stress and
mental health. Research on sentence-level stress detection has been mostly focused on written
text collected from social media and utilized stress-related words from dictionary [1, 2].

• Recently, attention-based LSTM is a model that learns long dependency across words in an
utterance and weighs the importance of every word in the memory [3].

• Distant supervision is known to be useful in utilizing noisy labels in tweets.

Visualization

To interpret the trained model, we extract the at-
tention weights from the best model and evalu-
ate several stressed and unstressed utterances.
Darker colors represent stronger word contribu-
tions to the classification task. Interestingly, it
captures key terms related to stress.

Number one being employment after graduation

My parents give me a lot of pressure

So yeah this course is actually very difficult

And I will be very stressed out

uh Currently I'm very anxious about several things

i am not stressed
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Methodology

We build a bidirectional LSTM (BLSTM) taking
word embedding as input. We denote V as the
number of unique words in our corpus and k as
the dimension of the word embedding vectors.
Each word is a one-hot vector x ∈ R|V | and per-
forms a multiplication with the embedding layer
A ∈ R|V |·k, where k = 100. The resulting vector
is b ∈ Rk. The LSTM consists of one recurrent
layer that propagates the embedding vector bt
for the word at time t where t ∈ [1, T ].

b = ATx
−→
ht = LSTM(bt)
←−
ht = LSTM(bT−t)
h = [

−→
ht :
←−−
hT−t]

All hidden states from both directions are con-
catenated and fed into a subsequent attention
layer [3]. The word importance vector ut is
calculated. The normalized word weight αt is
obtained through a softmax. The aggregate
of all the information in the sentence v is the
weighted sum of each ht with αt as correspond-
ing weights.

ut = tanh(Wht + b)

αt = exp(uTt u)
∑
t exp(uTt u)

v = ∑
t
αtht

This vector v is then fed to a fully connected
layer with softmax activation to perform the fi-
nal classification. The prediction is a vector y ∈
R2 with the probabilities of being unstressed and
stressed. We choose the highest probability by
using argmax as the model’s prediction.

Distant Supervision

A method to add unlabeled Twitter tweets to our
training set. This technique refers to extracting
noisy signals from text as label. We manually
pick hashtags that indicate either a stressed or
unstressed state of mind of the author, and use
them to scrape stressed and unstressed tweets.
They are included because our interview corpus
is relatively small and covers a limited number of
topics, mostly related to academia.

Model performance

method accu. prec. recall f-score
SVM 68.7 72.0 61.2 66.2
LSTM 70.0 70.3 68.1 69.2
LSTM w/ attention 73.8 74.7 71.9 73.2
BLSTM 72.2 74.5 67.5 70.8
BLSTM w/ attention 72.5 73.1 71.2 72.2

After applying Distant Supervision

method accu. prec. recall f-score
LSTM 73.4 73.6 73.1 73.4
LSTM w/ attention 73.8 74.4 72.5 73.4
BLSTM 73.8 74.7 71.9 73.2
BLSTM w/ attention 74.1 73.6 75.0 74.3

Conclusion

• The best performance was found for our
bidirectional LSTM model, which
outperformed the other models in terms of
accuracy, recall, and f-score.

• The two-phase training method with the
out-of-domain stress tweets dataset improves
the learning performance and robustness.

Conclusion

We have presented methods for classifying in-
terviewee stress level from interview transcrip-
tions. The best performance was found for our
bidirectional LSTM model, which outperformed
the other models in terms of accuracy and f-
score. The two-phase training method with the
out-of-domain stress tweets dataset improves
the learning performance. Future work includes
multi-modal learning using linguistic and acous-
tic features. We are also interested in gath-
ering more grammatically correct sentences for
transfer learning purposes, so the model may
learn how to deal with negation (among others).
Furthermore, we will incorporate the model de-
scribed here into our virtual therapist platform,
where it is fed with Automatic Speech Recog-
nition output. This makes the system aware of
user stress, to which it responds with appropri-
ate stress management advice and exercises.

Additional Information

Maecenas ultricies feugiat velit non mattis.
Fusce tempus arcu id ligula varius dictum.

• Curabitur pellentesque dignissim
• Eu facilisis est tempus quis
• Duis porta consequat lorem
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