

- **Encoder:** extract high level representation H
- **CTC:** optimize the CTC alignment that offers auxiliary information for token-level acoustic embedding extraction.
 - Time boundary for each token (trigger mask)
 - Number of tokens for decoder input (NoT)
- Fix mapping rule when obtaining trigger mask
- For example, first index of each token is end boundary
 - $Z = \{ _, C, C, _, A, _, _, T, _ \}$ Alignment [0, 0, 1, 1, 1, 0, 0, 0, 0].Trigger mask:

CASS-NAT: CTC Alignment-based Single Step Non-Autoregressive Transformer for Speech Recognition Ruchao Fan², Wei Chu¹, Peng Chang¹, Jing Xiao¹

fanruchao@g.ucla.edu

¹PAII Inc., USA

²Dept. of Electrical and Computer Engineering, University of California, Los Angeles, USA

• Token-acoustic extractor:

- 1 self-attention block
- Q: sinusoidal positional embedding with NoT
- K, V: encoder output H
- Mask: trigger mask from CTC alignment

• Decoder:

- self-att block (not considering H)
- mix-att block (considering H)

• **CE:** cross entropy loss to optimize the final WER.

2. Training Criterion

• Given $X = \{x_1, x_2, ..., x_T\}$ and $Y = \{y_1, y_2, ..., y_U\}$, the CTC alignment Z is introduced, the objective function is:

 $\log P(Y|X) = \log \mathbb{E}_{Z|X}[P(Y|Z,X)], \quad Z \in q.$

where q is the set of alignments which can be mapped to Y. • Maximum approximation is applied to reduce computation: D(X|X) > D [I] D(X|Z|X)]

$$g P(Y|X) \ge \mathbb{E}_{Z|X}[\log P(Y|Z,X)]$$

$$\approx \max_{Z} \log \prod_{u=1}^{\circ} P(y_u | z_{t_{u-1}+1:t_u}, x_{1:T})$$

where t_u is the end boundary of token u.

• The final objective function is:

$$L_{\text{joint}} = \max_{Z} \log \prod_{u=1}^{U} P(y_u | z_{t_{u-1}+1:t_u}, X) + \lambda \cdot \log \sum_{Z \in q} \prod_{i=1}^{T} P(z_i | X)$$

• Semantic modelling is relied on decoder with token-level acoustic embedding as input (assumption).

3. Inference strategy

• Ideally, oracle alignment (obtained using ground truth) • Best path alignment (BPA)

• **Pro:** one step inference **Con:** alignment is not accurate. • Beam search alignment (BSA)

• Pro: alignment is accurate Con: beam search, slow

Figure 2. Illustration of error-based alignment sampling method. -> CTC Alignments CTC Output

ere output							
	1	2	3	4-			
z_1	_ (0.95)	C(0.03)	K(0.01)				
z_2	C(0.90)	_ (0.07)	$Z\left(0.02 ight)$				
z_3	C(0.50)	_ (0.35)	K(0.10)				
z_4	_ (0.97)	C(0.01)	K(0.01)				
z_5	_ (0.61)	A (0.23)	O(0.12)				
z_6	_ (0.48)	A (0.29)	O (0.10)				
z_7	I (0.41)	_ (0.30)	A(0.20)				
z_8	_ (0.95)	T(0.02)	D(0.02)				
z_9	T(0.95)	_ (0.03)	D(0.01)				
z_{10}	_ (0.96)	T(0.02)	D(0.01)				

Best Path Alignment (BPA):
$\{ \ _{-} , C , C , \ _{-} , \ _{-} , \ _{-} , \ I , \ T , \ _{-} \}$
Error-based sampling Alignment (ESA):
$\Big[\{ _, C , _, _, _, _, _, I , T , _ \}$
$\left\{ \ _{-},C,C,\ _{-},\ A,\ _{-},\ I,\ T,\ _{-} ight\}$
$\left\{ \left\{ {{}_{-}},C,C,{}_{-},A,{}_{-},{}_{-},T,{}_{-} \right\} \right\}$
$\left \; \left\{ \; _ \; , C \; , \; C \; , \; _ \; , \; A \; , \; A \; , \; _ \; , T \; , \; _ \; \right\} \;$

• Error-based sampling alignment (ESA)

• Sampling over CTC output space is time consuming.

- Sampling based on best path alignment is easier.
- \circ If the probability is lower than the threshold (0.7), consider sampling within top2 tokens.
- It is possible to sample alignments with the same number of tokens as oracle alignment.
- Use AT or LM for ranking different sampled alignments based on decoder outputs.

 Model 2. Result

> Table 1. A comparison of accuracy and speed of Autoregressive Transformer (AT) and non-AT (NAT) algorithms on Librispeech.

With 01000

Wit

Table 2. A comparison of different alignment generation methods in CASS-NAT decoding without LM.

Experiment - Librispeech

1. Experimental Setup

• Input and output:

• 80-dim log-mel filter bank features

• Every 3 frames are concat to form a 240-dim input. • Output: 5k word-pieces obtained by SentencePiece [24].

• 2 CNNs: 64 filter, kernel size 3, stride 2

• AT baseline: $N_e = 12, N_d = 6, d_{FF} = 2048, H = 8, d_{MHA} = 512$ • CASS-NAT:

■ 1-layer token-acoustic extractor

Decoder: 3 self-att blocks and 4 mix-attn blocks • SpecAug, Label smoothing, **Encoder initialization**

		T	WER (%)				RTF
		Туре	dev- clean	dev- other	test- clean	test- other	test- clean
Without LM							
RETURNN [1]		AT	4.3	12.9	4.4	13.5	124
ESPNet		AT	3.2	8.5	3.6	8.4	-
AT (ours)		AT	3.4	8.5	3.6	8.5	0.562
Imputer [16]		NAT	-	-	4.0	11.1	-
	BPA	NAT	4.4	10.6	4.5	10.7	0.005
CASS-NAT	BSA	NAT	3.9	9.6	3.9	9.6	0.655
	ESA	NAT	3.7	9.2	3.8	9.1	0.011
With LM							
RETURNN [1]		AT	2.6	8.4	2.8	9.3	-
ESPNet [25]		AT	2.3	5.6	2.6	5.7	-
AT (ours)		AT	2.5	5.7	2.7	5.8	-
CASS-NAT	ESA	NAT	3.3	8.0	3.3	8.1	345

• ESA decoding reduces WER significantly compared to both BPA and BSA and has a moderate increase of RTF over BPA. • When no external LM is used, CASS-NAT is 51.2x faster than AT in terms of RTF, while has ~6% relative WER reduction. When using an external LM, the gap of WER between AT baselines and CASS-NAT is increasing.

3. Analyse of the performance

• Mismatch rate (MR): **Deletion and insertion errors** compared to the oracle alignment. Substitution errors do not affect token-level acoustic embedding extraction.

• Length prediction error rate (LPER): Taking the alignment as output and removing blank and repetitions, the ratio of utterances with different length compared to ground truth.

Alignment	S	WER (%)		MR (%)		LPER (%)	
0		test- clean	test- other	test- clean	test- other	test- clean	test- other
Oracle	n/a	2.3	5.8	n/a	n/a	n/a	n/a
BSA	n/a	3.9	9.6	2.2	5.8	27.9	48.3
BPA	n/a	4.5	10.7	2.1	4.9	31.0	51.8
	10	3.9	9.4	2.9	5.7	26.4	42.8
FOA	50	3.8	9.1	3.1	5.8	25.3	41.9
ESA	100	3.8	9.0	3.0	5.8	25.1	41.8
	300	3.8	9.0	3.1	5.8	25.1	41.9

• With oracle alignment, the lower bound of WER can be 2.3% for test-clean set.

- important for NAT.

1500

- **Experimental Setup**
 - $N_e = 6$

2. Result

Table 3. A comparison of WERs on Aishell1 with the existing works.

• For ESA, no further gains are observed when the number of sampled alignments is over 50.

• Correct estimation of the decoder input length is more

Figure 3. Length prediction error distributions and corresponding WERs with ESA(s=50) decoding on the test-clean dataset.

Utterance WER(%)

Length difference with the oracle alignment

• The WER can be lowered than 2% for the utterances with correct token number estimation.

• The figure shows the importance of length prediction accuracy on the encoder side again.

Experiment - Aishel

The setup is almost the same as that for librispeech except: • 4230 Chinese characters as output from training set.

• Additionally use **speed perturbation**.

CER(%)	NAT Type	Dev	Test
AT (ours)	n/a	5.5	5.9
Masked-NAT [13]	iterative	6.4	7.1
nsertion-NAT [15]	iterative	6.1	6.7
ST-NAT [18]	single step	6.9	7.7
LASO [17]	single step	5.8	6.4
CASS-NAT (ours)	single step	5.3	5.8

• Our proposed CASS-NAT is better than previous work. • CASS-NAT is slightly better than AT, which is promising. • Our framework general well according to the AT baseline.

Conclusion

• This work presents a novel CASS-NAT framework

• CTC alignment is used as auxiliary information to extract token-level acoustic embedding.

• The word embedding in AT is replaced with acoustic embedding for parallel generation.

• Viterbi-alignment is used for training.

• Error-based sampling alignment is proposed for inference. • The importance of length prediction for decoder input is shown by analyzing the relationships between different alignments with the oracle alignment.

• We decrease the gap between AT and NAT, and maintain the acceleration for NAT.

References