Numerical differentiation of
noisy, nonsmooth,
multidimensional data
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November 16, 2017

A mathematician is a device for
turning coffee into theorems.

-Alfréd Rényi
What we really need is a machine
to turn some of those theorems
back into coffee.

-A. J. Tolland
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Regularized differentiation

Motivation

Consider a function f defined by noisy data.
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Regularized differentiation

Motivation

Computing the derivative D f in a naive fashion gives a terrible result.
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Regularized differentiation

Motivation

Denoising the data first (in this case, using total-variation regularization)
and then differentiating improves the result, but we can do better.
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Regularized differentiation

Differentiation as an inverse problem

» We formulate the differentiation as an inverse problem: find a
function u whose antiderivative is approximately equal to f:

» By regularizing this inverse problem, we can enforce the condition
that u not be noisy.

. It
min | Dully + L1 Ku — I3
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Regularized differentiation

Result

The TV-regularized derivative is noisefree, and captures the essential
qualities of the derivative, including the discontinuity.
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Regularized differentiation

2D case

The same framework applies when f has 2 (or more) dimensions.
. I 2
min || Dull + 5| Ku — £13

However:
» u is vector valued.
» D is matrix valued.
» Computational efficiency is more important.
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ADMM algorithm
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ADMM algorithm

Variable splitting

We introduce a variable w, a proxy for Du.

1 Iz
: 7 _ 2 ~ _ 2
min [lwlly + _flw — Dully + 51 Ku — fl5.
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ADMM algorithm

Variable splitting

We introduce a variable w, a proxy for Du.

1 Iz
: 7 _ 2 ~ _ 2
min [lwlly + _flw — Dully + 51 Ku — fl5.

Then we alternate between solving for each variable, with the other
fixed. Each subproblem is much easier than the original problem.

1
. 2
min |l + o flw — Dull},

1 7
N T 2, M _ 2
min 2)\||w Dul|5 + 2||K'u fll3-
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Shrinkage

The w subproblem has an explicit solution:
. 1 2
arg min ||w||1 + —||lw — Dul|53 = S1(Du, A),
w 2\

where

S1(z, A) = max{|lz| — A, 0}” i

is known as soft thresholding.
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Shrinkage

The w subproblem has an explicit solution:
. 1 2
arg min ||w||1 + —||lw — Dul|53 = S1(Du, A),
w 2\

where -
Su(@, A) = max{ al] = A, 0}

is known as soft thresholding.

A modification of the £! norm lets us use p-shrinkage instead:

€T

Sp(e, N) = max{lel] - N*7Par 1, 0p
£

which for p < 1 can give better results.
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ADMM algorithm

Calculus in the Fourier domain

The u-subproblem is quadratic, giving us a linear equation to solve:

1 1
(XDTD + puKTK)u = XDTw + pKTf. (1)
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ADMM algorithm

Calculus in the Fourier domain

The u-subproblem is quadratic, giving us a linear equation to solve:

1 1
(XDTD + puKTK)u = XDTw + pKTf. (1)

If we use periodic boundary conditions for the differentiation, then D is
diagonalized by the discrete Fourier transform.
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ADMM algorithm

Calculus in the Fourier domain

The u-subproblem is quadratic, giving us a linear equation to solve:

1 1
(XDTD + puKTK)u = XDTw + pKTf. (1)

If we use periodic boundary conditions for the differentiation, then D is
diagonalized by the discrete Fourier transform.

We define our antidifferentiation K to also be diagonalized by the
discrete Fourier transform. Then (1) can be solved via an FFT, pointwise
division by a fixed kernel, and an inverse FFT.
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ADMM algorithm

The method of multipliers

We can enforce the equality constraint w = Dw by including a
Lagrange multiplier,

1 Iz
s o _ _ 2 ~ _ 2
min [|wlly + rllw — Du — All; + D1 Ku — £li3,

which is updated each iteration by adding the residual:

An+1 — An + Dun+1 _ wn-i—l.
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Application: phase unwrapping
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Application: phase unwrapping

Interferometric SAR

Given synthetic aperture radar images from two satellite passes, the
pixelwise difference in phase is a function of the elevation, and any
elevation changes between the two passes.

From G. Solaro, P. Imperatore, and A. Pepe, Satellite SAR interferometry for Earth’s crust deformation monitoring and geological phe-
nomena analysis, InTech 2016.
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Application: phase unwrapping

Sentinel-1 example

We look at an interferogram from the Descartes Labs platform, using
Sentinel-1A imagery of Isla Isabela in the Galapagos Islands on April 7
and April 19, 2017.

amplitude coherence

Descartes
Labs slide 16 of 23



Application: phase unwrapping

Interferogram coherence

We can use the coherence band to determine where the phase
information is meaningful.
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Application: phase unwrapping

Interferogram phase

The phase difference is noisy, and is only known modulo 27 (phase
wrapping).
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Application: phase unwrapping

Phase unwrapping

To unwrap the phase, we use the fact that the difference between the
true phase and the unwrapped phase is piecewise constant. Our
approach:

» Compute the gradient (using our regularization method).

» Where the gradient magnitude is large, fill in gradient values with
the mean of nearby non-large gradient values.

» Re-integrate the adjusted gradient (using K).
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Application: phase unwrapping

Regularized gradient

Regularization suppresses noise, while preserving discontinuities at
phase jumps. Using p = 1/4 gives less contrast loss than p = 1. The
Python implementation of the algorithm ran in 45 seconds.
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Application: phase unwrapping

Regularized gradient

Regularization suppresses noise, while preserving discontinuities at
phase jumps. Using p = 1/4 gives less contrast loss than p = 1. The
Python implementation of the algorithm ran in 45 seconds.
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Application: phase unwrapping

Unregularized gradient

The unregularized gradient is too noisy to be useful.
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Application: phase unwrapping

Unregularized gradient

The unregularized gradient is too noisy to be useful.
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Application: phase unwrapping

Result

The unwrapped phase has no discontinuities, and preserves the
elevation information.
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Summary

» Regularizing the differentiation process with total variation
suppresses noise, while preserving discontinuities.

» The alternating directions, method of multipliers algorithm makes
the differentiation very efficient.

» Differentiating interferometry phase lets us identify and remove
phase wrapping. Thanks to Mike Warren, Jason Schatz, and the
Descartes Labs platform team.

» Descartes Labs: satellite imagery startup. We’re hiring!
http://www.descarteslabs.com/jobs/
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