A Conversational Neural Language Model for Speech Recognition in Digital Assistants
Eunjoon Cho and Shankar Kumar

1. Introduction
- Conversions with digital assistants are centered around topics
- Can a recurrent neural network language model make use of context in a conversation to improve ASR?
- Prior work in modifying network architectures to incorporate the speaker turn/context
- This work:
 - Given the previous queries with/without agent responses, can we improve the language model for the current query?
 - Uses a standard LSTM language model architecture
 - Achieves a 4% relative WER reduction on Google Assistant

2. Conversational Context LSTM LM

3. Types of Contexts
- Queries Only: Each query is a treated as a sentence
- Query History: Prepend each query with previous 2 queries spoken within 5 minutes, separated by turn boundaries
 - What is the weather today? <t>
 - How about tomorrow? <t>
 - Will it be windy?
- Query History with Agent Responses: 3 queries with agent responses within 5 minutes, separated by turn boundaries
 - What is the weather today? <t>
 - It is cloudy with a high of 55 and a low of 32 <t>
 - How about tomorrow? <t>
 - It will be sunny with a high of 60 and a low of 40 <t>
 - Will it be windy? <t>
 - Yes, it will be windy with 16 m/hr winds coming from the west

4. Speech Recognition setup
- Training data: Anonymized queries/responses from Google Assistant in US English
 - 16.9B tokens from sequences with responses and 6.3B tokens from sequences without responses
 - LSTM LM has a vocabulary of 100k tokens
 - LSTM LM rescoring on lattices generated using a 5-gram LM
- 2nd pass interpolation weight of 0.5
- LSTM LM initialized using tokens from previous queries with/without the agent responses
- Previous queries are from the ASR output to simulate an actual system
- Test sets
 - Testset A has 16k tokens sampled from Google Assistant traffic
 - Testset B is a subset of Testset A with 12.6k tokens with exactly 2 previous query/response pairs per utterance

5. Do previous queries help?

6. Do previous responses help?

6. Conclusions
- Strategies for training a standard LSTM LM on conversation data from a digital assistant
- Experimented with a variety of inputs for training the model
- Obtained a 4% relative improvement in error rate on Google Assistant