Improving Sound Separation Using Sound Classification

<u>Efthymios Tzinis</u>^{1,2}, Scott Wisdom¹, John R. Hershey¹, Aren Jansen¹, Daniel P. W. Ellis¹ ¹Google Research ²University of Illinois at Urbana-Champaign

International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2020

Ideally we want to automatically separate all types of sounds

_ Ideally we want to automatically separate all types of sounds

Prior work: End-to-end universal sound separation [1]

- 10 dB SI-SDRi but still behind STFT oracle binary mask result of 16 dB
- Assuming that sound detection is easier than separation
 - What if we could detect the sources in a mixture?

[1] Ilya Kavalerov, Scott Wisdom, Hakan Erdogan, Brian Patton, Kevin Wilson, Jonathan Le Roux, and John R Hershey, "Universal sound separation," Proc. WASPAA, 2019, pp. 175–179. _ Ideally we want to automatically separate all types of sounds

Prior work: End-to-end universal sound separation [1]

- 10 dB SI-SDRi but still behind STFT oracle binary mask result of 16 dB
- Assuming that sound detection is easier than separation
 - What if we **could detect the sources in a mixture**?

Potential pitfalls of end-to-end separation networks training:

- Can the neural network practically learn a good decomposition for all sounds of interest?
- Might not be the best way to utilize the **high-level semantics** of sounds
- A separation network might need a bit of **guidance**

[1] Ilya Kavalerov, Scott Wisdom, Hakan Erdogan, Brian Patton, Kevin Wilson, Jonathan Le Roux, and John R Hershey, "Universal sound separation," Proc. WASPAA, 2019, pp. 175–179.

Idea: Guiding source separation using semantic representations audio sources

1. A neural network performing source separation on a mixture of signals

Idea: Guiding source separation using semantic representations audio sources

- 1. A neural network performing source separation on a mixture of signals
- 2. Extract a high-level semantic representation for the input audio "conditional embedding"

Idea: Guiding source separation using semantic representations audio sources

- 1. A neural network performing source separation on a mixture of signals
- 2. Extract a high-level semantic representation for the input audio "conditional embedding"
- 3. **Guide/condition** the separation network using this embedding in order to improve its accuracy

Separation Network:

Time-Dilated Convolution Network (TDCN++)

Baseline Separation Network: (similar to ConvTasNet [2])

- Analysis/Synthesis Basis:
 - **Learnable**: 1D convolution/deconvolution layers
 - Fixed: STFT basis

[2] Yi Luo and Nima Mesgarani, "Conv-tasnet: Surpassing ideal time–frequency magnitude masking for speech separation," IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2019.

Separation Network:

Time-Dilated Convolution Network (TDCN++)

Baseline Separation Network: (similar to ConvTasNet [2])

- Analysis/Synthesis Basis:
 - **Learnable**: 1D convolution/deconvolution layers
 - **Fixed**: STFT basis
- Separator:
 - 32 1D Separable convolutional blocks
 - Residual connections from previous blocks

[2] Yi Luo and Nima Mesgarani, "Conv-tasnet: Surpassing ideal time–frequency magnitude masking for speech separation," IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2019.

Separation Network:

Time-Dilated Convolution Network (TDCN++)

Baseline Separation Network: (similar to ConvTasNet [2])

- Analysis/Synthesis Basis:
 - Learnable: 1D convolution/deconvolution layers
 - **Fixed**: STFT basis
- Separator:
 - 32 1D Separable convolutional blocks
 - Residual connections from previous blocks

Loss:

• Permutation Invariant Signal to Noise Ratio (SNR)

$$\mathcal{L} = -SNR(\mathbf{s}_{p^*}, \hat{\mathbf{s}}) = -10 \log_{10} \frac{\|\mathbf{s}_{p^*}\|^2}{\|\mathbf{s}_{p^*} - \hat{\mathbf{s}}\|^2}$$

[2] Yi Luo and Nima Mesgarani, "Conv-tasnet: Surpassing ideal time–frequency magnitude masking for speech separation," IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2019.

Extract audio embeddings from a pre-trained sound classifier

Sound classifier:

- Event sound classifier (527 classes)
- Trained on AudioSet
- MobileNet for audio

How good are these embeddings?

• The sound classifier has also been trained using **mixtures** of sounds

Type of frame-wise conditional embeddings

- Embeddings of the **source** signals
 - An angry horse
 - Insect hissing

Type of frame-wise conditional embeddings

- Embeddings of the **source** signals
 - An angry horse
 - Insect hissing
- Embedding of the **mixture** signal:
 - Not always enclosing the semantic information of all the sources

Type of frame-wise conditional embeddings

- Embeddings of the **source** signals
 - An angry horse
 - Insect hissing
- Embedding of the **mixture** signal:
 - Not always enclosing the semantic information of all the sources
- **Soft OR** embedding:
 - The probability that one or more sources is active

Integrate at i-th layer of a TDCN++ :

1. **Resample** the embedding in time

- 1. Resample the embedding in time
- 2. Apply a **sigmoid** on the embedding vector

- 1. Resample the embedding in time
- 2. Apply a **sigmoid** on the embedding vector
- 3. Reduce channels dimensions

- 1. Resample the embedding in time
- 2. Apply a **sigmoid** on the embedding vector
- 3. Reduce channels dimensions
- 4. Global normalization

- 1. Resample the embedding in time
- 2. Apply a sigmoid on the embedding vector
- 3. Reduce channels dimensions
- 4. Global normalization
- 5. Combine with activations:
 - a. Concatenate $\mathbf{u}_{i-1} = [\mathbf{V}_{in}, \mathbf{y}_{i-1}] \in \mathbb{R}^{W \times (B+B')}$
 - b. Gating $\mathbf{u}_{i-1} = \mathbf{V}_{in} \odot \mathbf{y}_{i-1} \in \mathbb{R}^{W \times B}$

TDCN++ with pre-trained embeddings

Baseline experiment:

Using the embedding only from the input mixture

 $\mathcal{L} = -SNR\left(\mathbf{s}_{p^*}, \hat{\mathbf{s}}\right) = -10\log_{10}\frac{\|\mathbf{s}_{p^*}\|^2}{\|\mathbf{s}_{p^*} - \hat{\mathbf{s}}\|^2}$ Trainable Layers Frozen Layers

TDCN++ with pre-trained embeddings

- Concatenate the embeddings for mixture and all the sources
- This is a measure of upper bound of the performance improvement we can get from the integration of the semantic information
 Oracle experiment with soft-OR embedding

TDCN++ with fine-tuned embeddings

- Is not fine-tuned for the task for separation
- Embeddings are trained on **different data and task**

 $\mathcal{L} = -SNR(\mathbf{s}_{p^*}, \hat{\mathbf{s}}) = -10 \log_{10} \frac{\|\mathbf{s}_{p^*}\|^2}{\|\mathbf{s}_{p^*} - \hat{\mathbf{s}}\|^2}$

Trainable Layers	Frozen Layers

TDCN++ with fine-tuned embeddings

Problem: The pre-trained mixture embedding

- Is not fine-tuned for the task for separation
- Embeddings are trained on **different data and task**

Idea: Refining the embeddings before conditioning

• Fine-tuning the last layers of the sound classifier

 $\mathcal{L} = -SNR\left(\mathbf{s}_{p^*}, \hat{\mathbf{s}}\right) = -10\log_{10}\frac{\|\mathbf{s}_{p^*}\|^2}{\|\mathbf{s}_{p^*} - \hat{\mathbf{s}}\|^2}$

Frozen Layers

Trainable Layers

TDCN++ with fine-tuned embeddings

- Is not fine-tuned for the task for separation
- Embeddings are trained on **different data and task**

Idea: Refining the embeddings before conditioning

- Fine-tuning the last layers of the sound classifier
- End-to-end source separation:
 - The loss remains the same as before

Trainable Layers Frozen Layers

 $\mathcal{L} = -SNR(\mathbf{s}_{p^*}, \hat{\mathbf{s}}) = -10 \log_{10} \frac{\|\mathbf{s}_{p^*}\|^2}{\|\mathbf{s}_{p^*} - \hat{\mathbf{s}}\|^2}$

First estimate the sources and then

extract the conditional embeddings

The Premise:

• Using embeddings from clean sources might lead to better separation performance [SPOILER ALERT]

First estimate the sources and then

extract the conditional embeddings

The Premise:

• Using embeddings from clean sources might lead to better separation performance [SPOILER ALERT]

Idea: Extending end-to-end architecture for getting "all" embeddings

1. Try to separate the sources first

First estimate the sources and then

extract the conditional embeddings

The Premise:

• Using embeddings from clean sources might lead to better separation performance [SPOILER ALERT]

Idea: Extending end-to-end architecture for getting "all" embeddings

- 1. Try to separate the sources first
- 2. Use the first estimates of the sources in order to extract embeddings corresponding to the clean sources

Iterative separation and refinement of embeddings (iTDCN++)

1. Estimate the separated sources and then extract the embeddings for both the estimates and the input mixture

Iterative separation and refinement of embeddings (iTDCN++)

Architecture main points:

- 1. Estimate the separated sources and then extract the embeddings for both the estimates and the input mixture
- 2. Use the estimates and the embeddings for making better the final separation

Iterative separation and refinement of embeddings (iTDCN++)

Architecture main points:

- 1. Estimate the separated sources and then extract the embeddings for both the estimates and the input mixture
- 2. Use the estimates and the embeddings for **making better the final separation**

Source separation losses:

1. First separation estimation:

$$\mathcal{L}_{sep}^{(1)} = -SNR\left(\mathbf{s}_{p^*}, \hat{\mathbf{s}}^{(1)}\right)$$

Iterative separation and refinement of embeddings (iTDCN++)

Architecture main points:

- 1. Estimate the separated sources and then extract the embeddings for both the estimates and the input mixture
- 2. Use the estimates and the embeddings for making better the final separation

Source separation losses:

- 1. First separation estimation:
- 2. Final separation estimation:

$$\mathcal{L}_{sep}^{(1)} = -SNR\left(\mathbf{s}_{p^*}, \hat{\mathbf{s}}^{(1)}\right)$$
$$\mathcal{L}_{sep}^{(2)} = -SNR\left(\mathbf{s}_{p^*}, \hat{\mathbf{s}}^{(2)}\right)$$

Embeddings Losses: sigmoid cross-entropy (SCE)

Embeddings Losses: sigmoid cross-entropy (SCE)

• Making the **mixture embedding** look like the **soft OR embedding**:

$$\mathcal{L}_{emb}^{(1)} = SCE\left(\mathbf{V}_{or}^{p^*}, \hat{\mathbf{V}}_{m}^{(1)}\right)$$

Idea: Use the "ideal" embeddings as targets Embeddings Losses: sigmoid cross-entropy (SCE)

- Making the **mixture embedding** look like the **soft OR embedding**:
- Making the **sources embeddings** look like the **target ones**:

$$: \mathcal{L}_{emb}^{(1)} = SCE\left(\mathbf{V}_{or}^{p^*}, \hat{\mathbf{V}}_m^{(1)}\right)$$

$$\mathcal{L}_{emb}^{(2)} = SCE\left(\mathbf{V}_{or}^{p^*}, \hat{\mathbf{V}}_m^{(2)}\right) + SCE\left(\mathbf{V}_s^{p^*}, \hat{\mathbf{V}}_s^{(2)}\right)$$

 $\mathcal{L}_{sep}^{(2)} = -SNR\left(\mathbf{s}_{p^*}, \hat{\mathbf{s}}^{(2)}\right)$

Experiments on Universal Sound Separation

Task:

• 2 -source separation

Experiments on Universal Sound Separation

Task:

• 2 -source separation

Prosound Dataset:

- Wide variety of sound classes
 - o (animal calls, musical instruments, speech, artificial sounds, etc.)
 - 3 seconds clips sampled at 16kHz
- Train/Val/Test splits:
 - 11.7 hours training mixtures
 - 3.2 hours validation mixtures
 - 1.7 hours test mixtures

Experiments on Universal Sound Separation

Task:

• 2 -source separation

Prosound Dataset:

- Wide variety of sound classes
 - o (animal calls, musical instruments, speech, artificial sounds, etc.)
 - 3 seconds clips sampled at 16kHz
- Train/Val/Test splits:
 - 11.7 hours training mixtures
 - 3.2 hours validation mixtures
 - 1.7 hours test mixtures

Evaluation Metric:

• Permutation-invariant scale-invariant signal-to-distortion ratio improvement (SI-SDRi)

		Embeddings		STFT		Learned	
	Method	Type	Fine-tuning	Val.	Test	Val.	Test
Baselines	TDCN++ with no embeddings [8]	-		9.9	9.1	9.1	8.5
	iTDCN++ with no embeddings [8]	-	-	10.6	9.8	9.3	8.7
	Pretrained embeddings & TDCN++	mixture	-	10.3	9.4	9.4	8.6
	Fine-tuned embeddings & TDCN++	mixture	\checkmark	10.2	9.4	9.3	8.5
Proposed	Guided fine-tuned embeddings & TDCN++	mixture	1	10.3	9.4	9.4	8.6
	Pretrained embeddings & iTDCN++	all	1 -0	10.8	9.9	9.9	9.0
	Fine-tuned embeddings & iTDCN++	all	\checkmark	11.1	10.1	10.1	9.2
	Guided fine-tuned embeddings & iTDCN++	all	1	11.1	10.2	10.0	9.1
Oracles	Pretrained embeddings & TDCN++	all	-	11.3	10.6	11.0	10.2
	Fieuranieu enioedunigs & TDCIV++	soft-OR	-	11.4	10.6	10.7	10.1
	STFT binary mask		-	16.8	16.2	-	-

1. Consistent performance improvement when we use embeddings for source separation

a. Improvement also when simple pre-trained embeddings are used

		Embeddings		STFT		Learned	
	Method	Туре	Fine-tuning	Val.	Test	Val.	Test
Baselines	TDCN++ with no embeddings [8]	-	_	9.9	9.1	9.1	8.5
	iTDCN++ with no embeddings [8]	-	-	10.6	9.8	9.3	8.7
	Pretrained embeddings & TDCN++	mixture	-	10.3	9.4	9.4	8.6
	Fine-tuned embeddings & TDCN++	mixture	1	10.2	9.4	9.3	8.5
Proposed	Guided fine-tuned embeddings & TDCN++	mixture	1	10.3	9.4	9.4	8.6
	Pretrained embeddings & iTDCN++	all	-	10.8	9.9	9.9	9.0
	Fine-tuned embeddings & iTDCN++	all	1	11.1	10.1	10.1	9.2
	Guided fine-tuned embeddings & iTDCN++	all	1	11.1	10.2	10.0	9.1
Oracles	Pretrained embeddings & TDCN++	all		11.3	10.6	11.0	10.2
	Fieuanieu embeudings & TDCN++	soft-OR	-	11.4	10.6	10.7	10.1
	STFT binary mask	-	-	16.8	16.2	_	-

1. Consistent performance improvement when we use embeddings for source separation

a. Improvement also when simple pre-trained embeddings are used

b. Improvement also with the simpler end-to-end approach

		Embeddings		STFT		Learned	
	Method	Туре	Fine-tuning	Val.	Test	Val.	Test
Baselines	TDCN++ with no embeddings [8]	-		9.9	9.1	9.1	8.5
	iTDCN++ with no embeddings [8]	-	-	10.6	9.8	9.3	8.7
	Pretrained embeddings & TDCN++	mixture	-	10.3	9.4	9.4	8.6
Proposed	Fine-tuned embeddings & TDCN++	mixture	\checkmark	10.2	9.4	9.3	8.5
	Guided fine-tuned embeddings & TDCN++	mixture	1	10.3	9.4	9.4	8.6
	Pretrained embeddings & iTDCN++	all	-	10.8	9.9	9.9	9.0
	Fine-tuned embeddings & iTDCN++	all	1	11.1	10.1	10.1	9.2
	Guided fine-tuned embeddings & iTDCN++	all	1	11.1	10.2	10.0	9.1
Oracles	Pretrained embeddings & TDCN++	all	-	11.3	10.6	11.0	10.2
	Tretrained embeddings & TDCIV++	soft-OR	-	11.4	10.6	10.7	10.1
	STFT binary mask		-	16.8	16.2	_	

1. Consistent performance improvement when we use embeddings for source separation

- a. Improvement also when simple pre-trained embeddings are used
- b. Improvement also with the simpler end-to-end approach

2. Improvement over iTDCN++ for the non-oracle case: 0.4 dB (STFT basis) & 0.5 dB (Learnable basis)

		Embeddings		STFT		Learned	
	Method	Туре	Fine-tuning	Val.	Test	Val.	Test
Baselines	TDCN++ with no embeddings [8]	-	_	9.9	9.1	9.1	8.5
	iTDCN++ with no embeddings [8]	-	-	10.6	9.8	9.3	8.7
	Pretrained embeddings & TDCN++	mixture	-	10.3	9.4	9.4	8.6
Proposed	Fine-tuned embeddings & TDCN++	mixture	1	10.2	9.4	9.3	8.5
	Guided fine-tuned embeddings & TDCN++	mixture	1	10.3	9.4	9.4	8.6
	Pretrained embeddings & iTDCN++	all	-	10.8	9.9	9.9	9.0
	Fine-tuned embeddings & iTDCN++	all	1	11.1	10.1	10.1	9.2
	Guided fine-tuned embeddings & iTDCN++	all	1	11.1	10.2	10.0	9.1
Oracles	Pretrained embeddings & TDCN++	all		11.3	10.6	11.0	10.2
	Then among a more and a	soft-OR	-	11.4	10.6	10.7	10.1
	STFT binary mask	-	-	16.8	16.2		-

1. Consistent performance improvement when we use embeddings for source separation

- a. Improvement also when simple pre-trained embeddings are used
- b. Improvement also with the simpler end-to-end approach

2. Improvement over iTDCN++ for the non-oracle case: 0.4 dB (STFT basis) & 0.5 dB (Learnable basis)

3. Improvement over iTDCN++ for the oracle case: 0.8 dB (STFT basis) & 1.5 dB (Learnable basis)

Proposed

A **new way to integrate semantic information of audio** in order to perform higher quality universal sound separation.

Proposed

A **new way to integrate semantic information of audio** in order to perform higher quality universal sound separation.

Trained and evaluated >1000 models with different parameter configurations. Variable ways of conditioning separation networks for better source separation.

Proposed

A **new way to integrate semantic information of audio** in order to perform higher quality universal sound separation.

Explored

Trained and evaluated >1000 models with different parameter configurations. Variable ways of conditioning separation networks for better source separation.

Results

Our iterative approach achieves an improvement of **0.5 dB** (learnable basis) and **0.4 dB (STFT basis)** in SI-SDR over the baseline iterative model having no embeddings.

Proposed

A **new way to integrate semantic information of audio** in order to perform higher quality universal sound separation.

Explored

Trained and evaluated >1000 models with different parameter configurations. Variable ways of conditioning separation networks for better source separation.

Results

Our iterative approach achieves an improvement of **0.5 dB** (learnable basis) and **0.4 dB (STFT basis)** in SI-SDR over the baseline iterative model having no embeddings.

Future

Check whether separated sounds help sound classification (there is <u>DCASE 2020 Task 4</u> using the <u>new Free Universal</u> <u>Sound Separation (FUSS) dataset</u> that explores this task). Source separation with an unknown number of sources.

Thank you all!

Waiting to see you at the Q&A session!

Efthymios Tzinis

