ON ERROR RESILIENT DESIGN OF PREDICTIVE SCALABLE CODING SYSTEMS
Ahmed Elshafy, Tejaswi Nanjundaswamy, Sina Zamani and Kenneth Rose
Signal Compression Lab, Department of ECE, University of California Santa Barbara

Scalable Coder Architecture and Problem Statement

- Scalable coding framework considers hierarchical bitstream layers.
- Lower information bitstream is embedded into a higher information bitstream in a way that minimizes redundancy.
- Without loss of generality, we consider a two-layer predictive scalable coder.

Base Layer Operation

- First order linear predictor with prediction coefficient \(\alpha_b \).
- The base layer predictions are based on expected decoder reconstructions, \(\hat{x}_n = \alpha_b \hat{x}_{n-1} \).
- End-to-end distortion (EED) estimation can be expressed as, \(\mathbb{E} (d_b) = \sum_{n=0}^{N-1} x_n^2 - 2 \alpha_b \mathbb{E} (\hat{x}_n^2) + \mathbb{E} (\hat{x}_n^2) \).
- The base layers packets are assumed to be lost independently with probability \(p_b \).
- EED moments can be recursively updated as, \(\mathbb{E} \left(\hat{x}_n^2 \right) = (1 - p_b) \mathbb{E} \left(\hat{x}_{n-1}^2 \right) + \alpha_b^2 \mathbb{E} \left(\hat{x}_{n-1}^2 \right) \).

Enhancement Layer Operation

- The enhancement layer predictor combines current sample base layer information as well as previous enhancement layer information, \(\hat{x}_n = \mathbb{E} \left(x_n | x_{n-1}, \hat{x}_{n-1} \right) \).
- The intersection between base layer and enhancement layer quantizer intervals is then obtained as, \(\mathbb{E} (d_e) = \max \left(\hat{x}_n + A_e, \hat{x}_n + C_e \right) - \min \left(\hat{x}_n + A_e, \hat{x}_n + C_e \right) \).
- The enhancement layer packets are dropped independently with probability \(p_e \).
- Given the current channel event, the reconstruction at the decoder can be obtained as, \(\hat{x}_n = \mathbb{E} \left(x_n | x_{n-1}, \hat{x}_{n-1} \right) \).
- The EED moments at the enhancement layer can be updated recursively as, \(\mathbb{E} \left(\hat{x}_n^2 \right) = \frac{1}{\alpha_e^2} \mathbb{E} \left(\hat{x}_{n-1}^2 \right) + \frac{1}{\alpha_e^2} \mathbb{E} \left(\hat{x}_{n-1}^2 \right) \).
- Therefore, the optimal prediction coefficient at enhancement layer, that minimizes EED, is given by, \(\alpha^*_e = \frac{N-1}{\sum_{n=0}^{N-1} \mathbb{E} \left(\hat{x}_n^2 \right) - \mathbb{E} \left(\hat{x}_{n-1}^2 \right)} \).

Proposed Scalable Coder Architecture

- The enhancement block computes the enhancement layer EED moments according to (9).
- The PRE block computes the \(\hat{k}^{(L)} \), where \((L, R) \) depends on the current channel event.

Evaluations

- We compare our proposed coder (C3) with two competing coders:
 - Coder (C1) ignores packet losses. At enhancement layers, it directly quantizes the base layers reconstruction errors.
 - Coder (C2) ignores packet losses as well. However, the enhancement layer utilizes all the available information by employing estimation-theoretics approach similar to (6).
- The proposed approach consistently outperforms its competitors, offering up to 2.2 dB and 3.3 dB gains in SNR over C2 and C1, respectively.

http://www.scl.ece.ucsb.edu/