A Low-Complexity LS Turbo Channel Estimation Technique for MU-MIMO Systems

Y. Takano (Kobe Univ., Japan)
H.-J. Su (National Taiwan Univ., Taiwan)

The work of Y. Takano was supported in part by JSPS Kakenhi (C), No. 17K06423 and in part by the Telecommunications Advancement Foundation. The work of H.-J. Su was supported in part by MediaTek Inc. and the Ministry of Science and Technology (MOST), Taiwan, under grants 105-2622-8-002-002 and 106-2221-E-002-030.
Summary

• Turbo Receiver improves the MUI problem in MU-MIMO sys.
• However, the complexity expands as Num. of ANT increases
• Because, in order to deal Spatial matrix Γ correctly

NEW: Low complexity LS algo. for Turbo receiver
• Independent of Rx Ants.: $O(\kappa^3 N_T^3) \leftarrow O(\kappa^3 N_T^3 N_R^3)$
• No Accuracy Deterioration !
• Algebraic property of Cov. Matrix \mathbf{R}_{XX} is utilized
System Model

The u-th Transmitter

$\begin{align*}
 b_u(i) & \xrightarrow{\text{Binary information}} c_u(i_c) \\
 & \xrightarrow{\text{CC}} c_u(\Pi_u(i_c)) \\
 & \xrightarrow{\Pi_u} \mathbf{x}_{t,k'}(l) \\
 & \xrightarrow{\text{Serial-to-parallel convertor}} k' = 1
\end{align*}$

Receiver

$\begin{align*}
 \mathbf{y} & \xrightarrow{\text{Power}} \mathbf{p} \\
 & \xrightarrow{\Pi_u^{-1}} \mathbf{x}_u \\
 & \xrightarrow{\text{deinterleaver}} \mathbf{\hat{x}}_d \\
 & \xrightarrow{\text{Soft Replica}} \mathbf{\hat{x}}_{d,k}
\end{align*}$

The u-th Decoding Process

The U-th Decoding Process

TX Data Format

$\mathbf{X} = [\mathbf{X}_t \quad \mathbf{X}_d]$
LS Channel Estimation

$$\hat{H} = \arg\min_H \mathcal{L}_t(H)$$

$$= Y_t X_t^+ = Y_t X_t^H (X_t X_t^H)^{-1}$$

$$\mathcal{L}_t(H) = \frac{1}{\sigma^2_Z} \|Y_t - HX_t\|^2$$

Rx Signal: $$Y = HX + Z$$

H: Channel
X: TX Signal
Z: AWGN $\sim \mathcal{C}\mathcal{N}(0, \sigma^2_Z)$
LS Turbo
Channel Estimation

\(\hat{H} = \arg\min_H \mathcal{L}_{td}(H) \), where \(\mathcal{L}_{td}(H) = \mathcal{L}_t(H) + \mathcal{L}_d(H) \)

\[
\mathcal{L}_d(H) = \frac{1}{\sigma_Z^2} \| Y_t - H \hat{X}_d \|_F^2
\]

\[
= \frac{1}{\sigma_Z^2} \text{tr} \left\{ (Y_d - H \hat{X}_d)^H \Gamma (Y_d - H \hat{X}_d) \right\}
\]

\[
\Gamma = (I_{NR} + \sum_u \frac{\Delta \sigma_d^2}{\sigma_Z^2} R_{H,u})
\]
LS Solution:

\[
\text{vec}\{\hat{H}\} = R^{-1}_{XX} \cdot \text{vec}\{R_{YX}\}
\]

Gaussian Elimination?

\[O((WUN_T N_R)^3)\]

WUN_T N_R x WUN_T N_R Matrix

\[
R_{XX} = R_{XX_t}^T \otimes I_{N_R} + \hat{R}_{XX_d}^T \otimes \Gamma
\]

\[
R_{YX} = R_{YX_t} + \Gamma \hat{R}_{YX_d}
\]

- \(X_t: WUN_T \times L_t\)
- \(\hat{X}_d: WUN_T \times L_d\)
- \(Y_t: N_R \times L_t\)
- \(Y_d: N_R \times L_d\)

\[O((WUN_T)^2 L_{td})\]

\[O(N_R^2 L_{td})\]

System Size
- \(W: CIR\) length
- \(U: \text{Num. of Users}\)
- \(N_T, N_R: \text{Tx, Rx Ants.}\)
- \(L_t, L_d: \text{TS, Data Len.}\)
\[R_{XX} = R^{T}_{XX_t} \otimes I_{NR} + \hat{R}^{T}_{XX_d} \otimes \Gamma \]

\[= \left(R^{T/2}_{XX_t} \otimes I_{NR} \right) J \left(R^{T/2}_{XX_t} \otimes I_{NR} \right)^{H} \]

\[J = I_{WUNT} \otimes I_{NR} + R^{-H/2}_{XX_t} \hat{R}^{T}_{XX_d} R^{-1/2}_{XX_t} \otimes \Gamma \]

\[\sim \mathcal{O}(WUNTNR) \]

\[R_{XX}^{-1} = (\tilde{U}_Q \otimes U_{\Gamma}) \Sigma_{J}^{-1} (\tilde{U}_Q \otimes U_{\Gamma})^{H} \]

Unitary Diagonal Unitary

SVD:
\[\mathcal{O}(N_{R}^{3}) \]

\[Q = U_{Q} \Sigma_{Q} U_{Q}^{H} \]
\[\Gamma = U_{\Gamma} \Sigma_{\Gamma} U_{\Gamma}^{H} \]

\[\Sigma_{J} = I_{WUNTNR} + \Sigma_{Q} \otimes \Sigma_{\Gamma} \]
\[\tilde{U}_{Q} = R_{XX_t}^{*} U_{Q} \]
\[\text{vec}\{\hat{H}\} = \mathcal{R}_{xx}^{-1} \cdot \text{vec}\{R_{yx}\} \]

\[\mathcal{R}_{xx}^{-1} = (\tilde{U}_Q \otimes U_\Gamma) \cdot \Sigma_j^{-1} \cdot (\tilde{U}_Q \otimes U_\Gamma)^H \]

\[\hat{H} = \text{mat}_N[R] [\text{vec}\{\hat{H}\}] \]

\[= U_\Gamma \text{mat}_N[v] \tilde{U}_Q^T \]

\[v = \text{diag}\{\Sigma_j^{-1}\} \odot \text{vec}\{\tilde{U}_Q^H R_{yx} U_\Gamma^*\} \]

Consequently, \(O((WUN_T)^3) \) when \(WUN_T \ll N_R \)

\[\leftarrow O\left((WUN_T)^3 + N_R^3 + (WUN_T)^2 L_{td} \right) \]
Numerical Results

No Performance Degradation

Channel models: {PB 3km/h, VA 30km/h}
2Users, 4 x 12 MIMO, SNR=18dB

Complexity is Independent of Rx antennas

\[O(\kappa^3 N_T^3 N_R^3) \]

System size: \(\kappa = WU \)

\[O(\kappa^3 N_T^3) \]

Approx. \(\hat{R}_{H,u} \approx I_{NR} \)