Counting Plants
With Deep Learning

Javier Ribera1, Yuhao Chen1,
Christopher Boomsma2, Edward J. Delp1

1Video and Image Processing Laboratory (VIPER)
School of Electrical and Computer Engineering
Purdue University, West Lafayette, Indiana USA

2Department of Agronomy
Purdue University, West Lafayette, Indiana USA
Introduction

• Agronomists and farmers need to know the number of plants in their crops to predict future yield

• Can we count without locating?
• We count plants in a crop field without knowing where they are

• We build our plant dataset from a single image of the entire crop field
• We describe a method to extract images sections or “plots” from an orthorectified image
1. Plot Extraction
Dataset

420 meters ~ 4 football fields
Dataset

1,240 images were extracted

420 meters ~ 4 football fields
Vertical Projection
Profile Function

- Vertical profile over the entire crop field:

\[\hat{X}_0, \Delta \hat{X} = \arg \min_{x_0, \Delta x} \sum_{n=0}^{N-1} p(x_0 + n\Delta x) \]

- \(N \) : # lines
- \(X_0, \ldots, X_{N-1} \) : Coordinates of each plot-separating line
- \(X_n = X_0 + n\Delta X \quad n = 0, 1, \ldots, N - 1 \)
The Cost Function

- It does not seem appropriate for gradient descent:

\[\sum_{n=0}^{N-1} p(x_n + n\Delta x) \]

Can be found by brute force

\[\Delta x \]
1. User provides: (a) number of rows and (b) number of ranges
2. Find range-separating lines:
3. For each range, find row-separating lines:
Method

4. Select the n-th row of each range
Method

4. Find range-separating lines for the n-th row
Resulting Cropped Images
Resulting Cropped Images
Dataset

• We groundtruthed 2,480 labeled images
 – 80% for training, 10% for validation, 10% for testing

Example image
Plant count: 15
2. Plant Counting
Counting Plants With Deep Learning

Compared CNNs:
- AlexNet-v2
- Inception-v2
- Inception-v3
- Inception-v4

With minimal modification to adapt to image size
Cost Function

• Most research uses cross entropy as cost function, which reduces to

\[H(p, q) = -\log q(C) \]

where \(q(x) \) are the activations of the last layer, and \(C \) is the true number of plants

• This cost function is not appropriate when the classes are not independent, and there is label noise

• We want to count, not classify

• We propose to use the \(L_p \) norm

\[L_p (x, \hat{x}) = |x - \hat{x}|^p \]

and test which value of \(p \) provides the lowest error
Network Architectures

- We examined several CNN architectures:
 - Alexnet
 - Inception-v2
 - Inception-v3
 - Inception-v4
- We modify the last layers to be able to process non-rectangular images (of size 546×103)
Stopping Criteria

Error

Epoch

- Validation
- Test
- Training
Stopping Criteria

![Graph showing error vs. epoch with lines for training, validation, and test sets.]

- **Training**
- **Validation**
- **Test**

Epoch
Value For p

- Our metric for testing is Mean Average Percentage Error

\[MAPE = 100 \frac{|\hat{x} - C|}{C} \]

- Effect of p on the error, evaluated using AlexNet

<table>
<thead>
<tr>
<th>p</th>
<th>MAPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>8.2%</td>
</tr>
<tr>
<td>1.8</td>
<td>8.4%</td>
</tr>
<tr>
<td>1.5</td>
<td>8.5%</td>
</tr>
<tr>
<td>1</td>
<td>7.9%</td>
</tr>
</tbody>
</table>
Results

• Performance of different architectures was evaluated

<table>
<thead>
<tr>
<th>Network</th>
<th>MAPE (w/o data augm)</th>
<th>MAPE (w/ data augm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlexNet</td>
<td>8.3%</td>
<td>7.9%</td>
</tr>
<tr>
<td>Inception-v2</td>
<td>8.2%</td>
<td>6.7%</td>
</tr>
<tr>
<td>Inception-v3</td>
<td>7.1%</td>
<td>6.7%</td>
</tr>
<tr>
<td>Inception-v4</td>
<td>12.4%</td>
<td>11.4%</td>
</tr>
</tbody>
</table>

• (using $p=1$)
Conclusions

• We presented a CNN-based method to count plants without locating them

• We presented a method to segment (or extract) image sections, or plots, from an orthorectified image

• Future work will include investigating loss functions more stable than the L1, such as the smooth L1, and training with larger datasets