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Introduction

Compressed Sensing

o In Compressed Sensing (CS) we take M linear measurements
{yi}™. of an N-dimensional K-sparse (has at most K nonzero
components) vector X, according to

y = Ax (+w)
® Recovery is possible if A € RM*N satisfies the Restricted Isom-

etry Property (RIP)

e Matrices whose elements are randomly drawn from a
(sub-)Gaussian distribution satisfy RIP with high probability

Main ldea and Contributions
e \We want to reduce the effects of finite dynamic range
® Image and audio processing, bio-medical applications etc.

e Bhandari et al. propose digitalizing bandlimited signals with a
self-reset (SR) analog to digital converter (ADC) defined by
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where [t] = t — | t] is the remainder of the division t and \

® Perfect recovery of a bandlimited signal from its discrete samples
is possible if the sampling period T < (27e)™*

e A. Bhandari et al. provide sufficient conditions for perfect re-
covery of a K-sparse signal from its low-pass filtered version

e \We take CS measurements and digitalize them with a SR ADC
® The main contributions:

» Consider a new way of digitalizing CS measurements
» Apply the known GAMP framework
» Provide closed-form expressions for the nonlinear steps

—=© signal at the receiver
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Unlimited sampling of AWGN

corrupted CS measurements

Bernoulli-Gaussian Mixture Prior We assume an
I.i.d. source vector where each component x; of x is a realization
of a Bernoulli-Gaussian distributed random variable

px(x) = (L —€)0(x;) + € : 25
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with € being the probability of a non-zero value and o2 being the
variance of the zero-mean Gaussian distribution
Measurement Model

e We obtain M noisy CS measurement according to
y = M)\(AX + W).

e \We assume i.i.d. noise vector w where each w; ~ N(O, aﬁ,)

GAMP for Unlimited sampling

Why GAMP?
e GAMP is very appealing for its efficiency and accurate recovery

e |t approximates the computationally intractable high-

dimensional integration involved with calculating
X~ E{x|y}
e |t allows to model the quantization as a probabilistic channel

with unquantized input and quantized output

e |t allows to incorporate measurement noise in the model

The Steps of GAMP

o At t = 0, the algorithm is initialized according to (the far right
values correspond to the Bernoulli-Gaussian mixture prior)
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e At every iteration t = 1,2, ... compute the measurement and

estimation updates
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e The functions Fi(:), Fu(-), Gi(:) and Gy(-) are applied

component-wise and are given by
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e The first and the second moment of z|y and x|F are evaluated
with respect to

Pely Pyl | -)Pz(-) and - pyp o< g+ 7, vr)px()
where z ~ N(p, v,)

o Stop iterating if [|Xf — K'Y, < € [|X||> with a small ¢ > 0
(e.g. € = 1072) or when t >ty

® GAMP nonlinear operators are computed for the specific input
and output channels and given in the paper

Numerical Results

Simulation Setup

e \We averaged our results over 4000 independent realizations of
the source vector x, the sensing matrix A and the AWGN w

® [n each simulation we fix N = 256, and acquire n = p N mea-
surements of the K = € N sparse vector

e Each CS measurement vector is corrupted with AWGN noise
with power o2 = 107°NR/10 "where the SNR is defined as

SNR/dB = 10logyo{[ly*||*/[Iw|*}

® [n the noiseless case SNR = oo. The SR ADC threshold A =1
® Successful recovery := MSE < —30dB

0.05

0.1

0.15

0.2

0.25 k&

Technische
Universitat
Berlin

Results

e Noiseless Case: There's a clear phase transition (PT) between
unsuccessful (blue) and successful (yellow) regions

e Classical CS algorithms completely fail when ||€,||o7 0

® GAMP can cope with distortion: the PT is almost linear in €

® Noisy Case: The PT curve shifted to the right lower corner

® More measurements are needed when the CS measurements are

corrupted with AWGN (SNR = 20dB) before digitalization

Conclusion

® For certain choice of the signal parameters, the GAMP is able to
successfully recover a sparse signal from folded measurements

® Unlike the classical algorithms for recovery of sparse signals from
folded measurements, the GAMP algorithm can cope with the
noise introduced by a communication channel
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