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Introduction

Compressed Sensing
• In Compressed Sensing (CS) we take M linear measurements
{yi}Mi=1 of an N-dimensional K -sparse (has at most K nonzero
components) vector x, according to

y = Ax (+w)

•Recovery is possible if A ∈ RM×N satisfies the Restricted Isom-
etry Property (RIP)

•Matrices whose elements are randomly drawn from a
(sub-)Gaussian distribution satisfy RIP with high probability

Main Idea and Contributions
•We want to reduce the effects of finite dynamic range

• Image and audio processing, bio-medical applications etc.

•Bhandari et al. propose digitalizing bandlimited signals with a
self-reset (SR) analog to digital converter (ADC) defined by
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where JtK , t − btc is the remainder of the division t and λ

•Perfect recovery of a bandlimited signal from its discrete samples
is possible if the sampling period T ≤ (2πe)−1

•A. Bhandari et al. provide sufficient conditions for perfect re-
covery of a K-sparse signal from its low-pass filtered version

•We take CS measurements and digitalize them with a SR ADC

•The main contributions:

IConsider a new way of digitalizing CS measurements

IApply the known GAMP framework

IProvide closed-form expressions for the nonlinear steps
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Unlimited sampling of AWGN
corrupted CS measurements

Bernoulli-Gaussian Mixture Prior We assume an
i.i.d. source vector where each component xj of x is a realization
of a Bernoulli-Gaussian distributed random variable

pxj(xj) = (1− ε)δ(xj) + ε
1√
2πσ

e−
1

2σ2
x2j ,

with ε being the probability of a non-zero value and σ2 being the
variance of the zero-mean Gaussian distribution
Measurement Model
•We obtain M noisy CS measurement according to

y =Mλ

(
Ax + w

)
.

•We assume i.i.d. noise vector w where each wi ∼ N (0,σ2
w)

GAMP for Unlimited sampling

Why GAMP?
•GAMP is very appealing for its efficiency and accurate recovery

• It approximates the computationally intractable high-
dimensional integration involved with calculating

x̂ ≈ E{x | y}

• It allows to model the quantization as a probabilistic channel
with unquantized input and quantized output

• It allows to incorporate measurement noise in the model

The Steps of GAMP
•At t = 0, the algorithm is initialized according to (the far right

values correspond to the Bernoulli-Gaussian mixture prior)

x̂0 = E{x} = 0, v0
x = var{x} = (1− γ)σ2, ŝ0 = 0M×1

•At every iteration t = 1, 2, ... compute the measurement and
estimation updates

vtp = (A • A)vt−1
x vtr =

(
(A • A)Tvts

)−1

p̂t = Ax̂t−1 − vtp • ŝt−1 r̂t = x̂t−1 + vtr • (AT ŝt)

ŝt = F1(y, p̂t, vtp) x̂t = G1(̂rt, vtr ; px)

vts = F2(y, p̂t, vtp) vtx = G2(̂rt, vtr ; px)

•The functions F1(·), F2(·), G1(·) and G2(·) are applied
component-wise and are given by

F1(y , p̂, vp) =
E{z | y} − p̂

vp
G1(r̂ , vr ; px) = E{x | r̂}

F2(y , p̂, vp) =
vp − var{z | y}

v 2
p

G2(r̂ , vr ; px) = var{x | r̂}

•The first and the second moment of z |y and x |r̂ are evaluated
with respect to

pz |y ∝ py |z(· | ·)pz(·) and px |r̂ ∝ g(·; r̂ , vr)px(·)
where z ∼ N (p̂, vp)

• Stop iterating if ‖x̂t − x̂t−1‖2 < ε ‖x̂t‖2 with a small ε > 0
(e.g. ε = 10−2) or when t ≥ tmax

•GAMP nonlinear operators are computed for the specific input
and output channels and given in the paper

Numerical Results

Simulation Setup
•We averaged our results over 4000 independent realizations of

the source vector x, the sensing matrix A and the AWGN w

• In each simulation we fix N = 256, and acquire n = ρN mea-
surements of the K = εN sparse vector

•Each CS measurement vector is corrupted with AWGN noise
with power σ2

w = 10−SNR/10, where the SNR is defined as

SNR/dB = 10 log10{‖y∗‖2/‖w‖2}
• In the noiseless case SNR =∞. The SR ADC threshold λ = 1

• Successful recovery := MSE ≤ −30dB
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Results
•Noiseless Case: There’s a clear phase transition (PT) between

unsuccessful (blue) and successful (yellow) regions

•Classical CS algorithms completely fail when ‖εg‖0 6= 0

•GAMP can cope with distortion; the PT is almost linear in ε

•Noisy Case: The PT curve shifted to the right lower corner

•More measurements are needed when the CS measurements are
corrupted with AWGN (SNR = 20dB) before digitalization

Conclusion

• For certain choice of the signal parameters, the GAMP is able to
successfully recover a sparse signal from folded measurements

•Unlike the classical algorithms for recovery of sparse signals from
folded measurements, the GAMP algorithm can cope with the
noise introduced by a communication channel
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