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Zeroth-Order (Gradient-Free) Optimization

•Zeroth-order (gradient-free) optimization approximates the full gradient via
a random gradient estimate.

Summary of Our Work

We investigate the convergence of ZO stochastic projected gradient descent
(ZO-SPGD) for constrained convex/nonconvex optimization. Our work is
motivated by the ZO proximal gradient algorithm proposed in [1]. However,
the ZO gradient estimator considered in [1] is different from our work: we
construct the gradient estimate through random direction samples drawn
from a bounded uniform distribution rather than a Gaussian distribution
in [1]. This analysis leads to different statistics of our random gradient
estimator. We establish the following convergence results.
•ZO-SPGD has a O( d

bq
√
T

+ 1√
T

) convergence rate to minimize convex
(but possibly non-smooth) loss functions.

•For constrained nonconvex optimization, ZO-SPGD yields a O( 1√
T

)
convergence rate up to an additional error correction term of order
O(d+q

bq ).

Problem Statement

Consider a constrained finite-sum problem of the form
minimize

x∈C
f (x) := 1

n

∑n
i=1 fi(x), (1)

where x ∈ Rd is the optimization variable, C ∈ Rd is a closed convex set, and
{fi(x)} are n component functions (not necessarily convex).
We consider the problem setting in which A1 and/or A2 are satisfied.
A1: Functions {fi} are L1-Lipschitz continuous for a finite positive constant
L1.
A2: Functions {fi} are differentiable and have L2-Lipschitz continuous gra-
dients, where L2 is a finite positive constant.
A1 allows {fi} to be non-differentiable and implies that subgradients of {fi}
are bounded. When A2 holds, {fi} are restricted to differentiable functions
and it implies that

fi(x)− fi(y) ≤ ∇fi(y)x− y + (L2/2)‖x− y‖2.

Random Gradient Estimation

Given an arbitrary function f (not necessarily in a finite-sum form), a two-
point based average random gradient estimator ∇̂f (x) is defined by

∇̂f (x) = d

q

q∑
j=1

f (x + µuj)− f (x− µuj)
2µ

uj, (Avg-RandGradEst)

where d is the number of optimization variables, µ > 0 is a smoothing param-
eter, and {uj} are i.i.d. random directions drawn from a uniform distribution
over a unit sphere.

Lemma 1: Statistics of random gradient estimate

Define fµ = Ev∈Ub[f (x + µv)], where Ub denotes a uniform distribution
with respect to the unit Euclidean ball. Then Avg-RandGradEst yields the
following results:
a) For any x ∈ Rd

E
[
∇̂f (x)

]
= Eu [(d/µ)f (x + µu)u] = ∇fµ(x), (2)

where u is a vector picked uniformly at random from the Euclidean unit
sphere. Moreover, under assumptions A1, the smoothing function fµ is L1-
Lipschitz continuous. Under A2, fµ has L2-Lipschitz continuous gradient.
b) Suppose that assumption A1 holds, for any x ∈ Rd

E
[
‖∇̂f (x)‖2

]
≤ (c1d + 4q)L2

1
4q

, (3)

and under assumption A2, for any x ∈ Rd

E
[
‖∇̂f (x)‖2

]
≤ 2

(
1 + d

q

)
‖∇f (x)‖2

2 +
(

1 + 1
q

)
µ2L2

2d
2

2
, (4)

where the expectation is taken with respect to random direction vectors
{uj} in Avg-RandGradEst, and c1 is a numerical constant in (3).

Lemma1 uncovers important properties of Avg-RandGradEst.
•The use of multiple (q > 1) random direction vectors {uj} does not reduce
the bias of ∇̂f (with respect to ∇f ). That is because ∇̂f is unbiased with
respect to ∇fµ, and the distance between ∇f and ∇fµ is fixed: As µ→ 0,
we obtain ∇fµ(x)→ ∇f (x). However, if µ is too small, then the function
difference could be dominated by the system noise and fails to represent the
function differential.

•The variance of the random gradient estimator is reduced as q increases. In
particular, a large q mitigates the dimension (d) dependency on the
second-order moment of Avg-RandGradEst.

Algorithm

1: Input: Total number of iterations T , step sizes {ηk}T−1
k=0 , mini-batch size

b, initial iterate x0 ∈ C,
2: for k = 0, 1, . . . , T − 1 do
3: choose a mini-batch Ik with b i.i.d. samples from [n]
4: compute a gradient estimate ĝk = 1

b

∑
i∈Ik ∇̂fi(xk)

5: project onto πC
xk+1 = ΠC [xk − ηkĝk] (5)

6: end for
7: output: xR averaged/sampled from {xk}T−1

k=0

Convergence Analysis: Convex Case

Theorem 1: Convergence rate of ZO-SPGD for
convex optimization

Suppose that assumption A1 holds and f in problem (1) is convex. Given
ηk = η, ‖x0 − x∗‖ ≤ R, and xR = 1

T

∑T−1
k=0 xk in Algorithm1, then

E[f (xR)− f (x∗)] ≤ R2

ηT
+ (c1d + 4q)L2

1
4bq

η + L2
1η + 2L1µ.

In Theorem1, let η = 1√
T
and µ = 1√

T
(milder conditions than many other

works), we obtain the convergence rate O( d
bq
√
T

+ 1√
T

). We can also conclude
that the use of multiple minibatch samples (b) and random direction vectors
(q) improves the convergence rate of ZO-SPGD.

Convergence Analysis: Nonconvex Case

For constrained non-convex problems, the convergence of an algorithm at point
xk can be measured by ‘gradient mapping’ [2, 1],

PC(xk,∇f (xk), η) = (1/η) [xk − ΠC (xk − η∇f (xk))] . (6)
Interpretation: projected gradient, which offers a feasible update from the
previous point xk,

ΠC (xk − η∇f (xk)) = xk − ηPC(xk,∇f (xk), η).
Our goal is to bound E[‖PC(xk,∇f (xk), η)‖2

2].

Convergence Analysis: Nonconvex Case

Proposition 1: Relationship between the variance of
a gradient estimator and the convergence rate

If assumption A2 holds and ηk ∈ (0, 1/L2), then the outputs {xk}T−1
k=0 of

Algorithm1 satisfies
T−1∑
k=0

((
2ηk − L2η

2
k

)
E
[
‖PC(xk, ĝk, ηk)‖2])

≤
T−1∑
k=0

(
2ηkE

[
‖ĝk − E[ĝk|xk]]‖2

])
+ 2µ2L2 + c2,

where E is taken with respect to all the randomness (e.g., minibatch and
random directions), PC is the gradient mapping given by (6), and c2 =
2(f (x0)− f (x∗)).

Theorem 2: Convergence rate of ZO-SPGD for
nonconvex optimization

Suppose that A1-A2 hold, and ηk ∈ (0, 2/L2). By randomly selecting xR
from {xk}T−1

k=0 with probability

P (R = k) = 2ηk − L2η
2
k∑T−1

k=0 (2ηk − L2η2
k)
,

the convergence rate of Algorithm1 is given by
E
[
‖PC(xR,∇f (gR), ηR)‖2]

≤3(c1d + 4q)L2
1(
∑T−1

k=0 ηk)
2bq
∑T−1

k=0 (2ηk − L2η2
k)

+ 6µ2L2 + 3c2∑T−1
k=0 (2ηk − L2η2

k)
+ 3µ2L2

2d
2

4
+ 3(c1d + 4q)L2

1
4bq

.

(7)

Several insights can be drawn from Theorem2.
•The first term in the convergence rate (7) is bounded by by O(d+q

bq ) up to a
constant factor.

• If we choose the constant stepsize η = cη√
T
∈ (0, 1/L2) for some constant cη

and µ = 1
d1/2(bq)1/2, then Theorem1 implies the convergence rate O( 1√

T
+ d+q

bq ).
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