Zeroth-Order (Gradient-Free) Optimization

= Zeroth-order (gradient-free) optimization approximates the full gradient via
a random gradient estimate.

Summary of Our Work

We investigate the convergence of ZO stochastic projected gradient descent
(ZO-SPGD) for constrained convex/nonconvex optimization. Our work is
motivated by the ZO proximal gradient algorithm proposed in |[1]. However,
the ZO gradient estimator considered in [1] is different from our work: we
construct the gradient estimate through random direction samples drawn
from a bounded uniform distribution rather than a Gaussian distribution
in [1]. This analysis leads to different statistics of our random gradient
estimator. We establish the following convergence results.

- ZO-SPGD has a O(bqil/T | \/1T) convergence rate to minimize convex

(but possibly non-smooth) loss functions.

« For constrained nonconvex optimization, ZO-SPGD yields a O(%)
convergence rate up to an additional error correction term of order

O(F2).

bq

Problem Statement

Consider a constrained finite-sum problem of the form

minimize f(x) 1= %2?;1 fi(x), (1)

xeC
where x € R? is the optimization variable, C € R? is a closed convex set, and
{fi(x)} are n component functions (not necessarily convex).
We consider the problem setting in which A1 and/or A2 are satisfied.
A1: Functions { f;} are L;-Lipschitz continuous for a finite positive constant
L.
A2: Functions { f;} are differentiable and have Lo-Lipschitz continuous gra-
dients, where L+ is a finite positive constant.
A1 allows { f;} to be non-differentiable and implies that subgradients of { f;}
are bounded. When A2 holds, {f;} are restricted to differentiable functions

and it implies that
filx) = fily) < Vily)x —y + (L2/2)[|x — y]|".
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Random Gradient Estimation

Given an arbitrary function f (not necessarily in a finite-sum form), a two-
point based average random gradient estimator V f(x) is defined by

q
Vf(x) = C—iz foet py) = Jlx =y )uj, (Avg-RandGradEst)

where d is the number of optimization variables, © > 0 is a smoothing param-
eter, and {u,} are i.i.d. random directions drawn from a uniform distribution
over a unit sphere.

Lemma 1: Statistics of random gradient estimate

Define f, = Eyep,|f(x + pv)], where U}, denotes a uniform distribution
with respect to the unit Euclidean ball. Then Aveg-RandGradEst yields the

following results:
a) For any x € R?

B |V (3)| = Bu[(d/p)f(x + pra)u] = V f,(x) (2)
where u is a vector picked uniformly at random from the Euclidean unit

sphere. Moreover, under assumptions A1, the smoothing function f, is L-

Lipschitz continuous. Under A2, f, has Lo-Lipschitz continuous gradient.
b) Suppose that assumption A1 holds, for any x € R

E [V 00 7] < (2100 (3)

4q ’
and under assumption A2, for any x € R?

1\ p*Lsd?

e [195001F] <2 (1+2) 195601+ (1+1) 20 @

where the expectation is taken with respect to random direction vectors
{u,} in Avg-RandGradEst, and ¢; is a numerical constant in (3).

Lemma 1 uncovers important properties of Aveg-RandGradEst.

= The use of multiple (¢ > 1) random direction vectors {u,} does not reduce
the bias of V f (with respect to V f). That is because V [ is unbiased with
respect to V f,,, and the distance between V [ and V[, is ixed: As p — 0,
we obtain V f,(x) — V f(x). However, if p is too small, then the function
difference could be dominated by the system noise and fails to represent the
function differential.

« The variance of the random gradient estimator is reduced as ¢q increases. In
particular, a large ¢ mitigates the dimension (d) dependency on the
second-order moment of Avg-RandGradEst.

Algorithm

1. Input: Total number of iterations T, step sizes {nk}gz_ol, mini-batch size
b, initial iterate x; € C,

- for £k=0,1,...,7 —1do

choose a mini-batch Z with b i.i.d. samples from |n]

compute a gradient estimate gy = %Zielk Y fi(xx)
project onto me

A

X1 = e X — 7181] (5)

6: end for
7. output: xp averaged/sampled from {Xk}gz_ol

Convergence Analysis: Convex Case

Theorem 1: Convergence rate of ZO-SPGD for
convex optimization

Suppose that assumption A1 holds and f in problem (1) is convex. Given

=1, ||xo —x*|| < R, and xp = %le;ol x; in Algorithm 1, then

R*  (cd+4q)L3

[ ocr) = 0] < o+

1 L%U + 2L1/L

In Theorem 1, let n = % and (4 = % (milder conditions than many other

works), we obtain the convergence rate O(bqii/T | 1T). We can also conclude

that the use of multiple minibatch samples (b) and random direction vectors
(q) improves the convergence rate of ZO-SPGD.

Convergence Analysis: Nonconvex Case

For constrained non-convex problems, the convergence of an algorithm at point
X; can be measured by ‘gradient mapping’ |2, 1],

Pe(x1, Vf(xx),n) = (1/n) [xx — e (xp =0V f(x))] (6)

Interpretation: projected gradient, which offers a feasible update from the

previous pomnt Xg,
e (xr — 0V f(xk)) = xp — nPe(Xp, V f(Xk), ).
Pe(xr, V f(x1),1)][3].

Our goal is to bound E|

Convergence Analysis: Nonconvex Case

Proposition 1: Relationship between the variance of
a gradient estimator and the convergence rate

[f assumption A2 holds and n; € (0,1/Ls), then the outputs {x;}, - of

Algorithm 1 satisfies
T—1

S (2 — L) E [ Pe(xe, & m)[17])

where E is taken with respect to all the randomness (e.g., minibatch and
random directions), Pp is the gradient mapping given by (6), and ¢y =

2 f(x0) = f(x")).

Theorem 2: Convergence rate of ZO-SPGD for
nonconvex optimization

Suppose that A1-A2 hold, and ;. € (0,2/Ly). By randomly selecting xp
from {x; Z:_Ol with probability
2n, — Lom;,
i (2 — Lo})
the convergence rate of Algorithm 1 is given by
0 || Pe(xR, Vf(gR),nr)|I
_3(cid + 4q) LA )

T 20g 3 2 (2 — Lom})

P(R=Fk) =

6142 Loy + 3o
T_ |
k:ol(znk — L277/%> 4

3pLad® 3(cid +4q)L

(7)

Several insights can be drawn from Theorem 2.

= The first term in the convergence rate (7) is bounded by by O(db—zq) up to a
constant factor.

= If we choose the constant stepsize 1 = % € (0,1/Ls) for some constant c,

and p = = /Q(éq>1 5, then Theorem 1 implies the convergence rate O(\}T | d;q 1).
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