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Abstract

Gaussian mixture model (GMM) is a powerful probabilistic model for representing the
probability distribution of observations in the population. However, the fitness of Gaus-
sian mixture model can be significantly degraded when the data contain a certain amount
of outliers. Although there are certain variants of GMM (e.g., mixture of Laplace, mixture
of t distribution) attempting to handle outliers, none of them can sufficiently mitigate the
effect of outliers if the outliers are far from the centroids. Aiming to remove the effect of
outliers further, this paper introduces a Self-Paced Learning mechanism into mixture of t
distribution, which leads to Self-Paced Mixture of t Distribution DModel (SPTMM). We
derive an Expectation-Maximization based algorithm to train SPTMM and show SPTMM
is able to screen the outliers. To demonstrate the effectiveness of SPTMM, we apply
the model to density estimation and clustering. Finally, the results indicate that SPTMM
outperforms other methods, especially on the data with outliers.

Main Contributions

•This is the first work of employing Self-Paced Learning (SPL) to mixture model, with
the aim to effectively remove the influence of outliers.
•We propose our SPTMM method which integrates SPL with TMM, and develop an EM

based algorithm to solve the corresponding optimization problem.
•Extensive experiments demonstrate the superiority of our SPTMM method for density

estimation and clustering.

Related Works

Mixture of t Distribution

The t distribution is defined as follows. A p-dim random vector xxx ∈ Rp follows the p-
variate t distribution with degrees of freedom ν ∈ R+, mean µµµ ∈ Rn, and correlation
matrix ΣΣΣ ∈ Π(p) if its joint probability density function (PDF) is given by

t (xxx|ν,µµµ,ΣΣΣ) =
Γ[(ν + p)/2]

Γ(ν/2)νp/2πp/2|ΣΣΣ|1/2
·
[

1 +
1

ν
(xxx− µµµ)TΣΣΣ−1(xxx− µµµ)

]−ν+p
2

.

The mixture of t distribution model (TMM) is a linear superposition of g-component t
distribution, i.e.,

φ(xxx;ΨΨΨ) =

g∑
j=1

πjt(xxx; νj,µµµj,ΣΣΣj),

where πj is the mixing coefficient of the j-th component and ΨΨΨ = {πππ,ννν,µµµ,ΣΣΣ}, in which
πππ = (π1, π2, . . . , πg)

T, ννν = (ν1, ν2, . . . , νg)
T, µµµ = (µµµ1,µµµ2, . . . , µµµg), and ΣΣΣ = (ΣΣΣ1,ΣΣΣ2,

. . . ,ΣΣΣg).
Given the dataset D = {xxxi|i = 1, 2, . . . , n}, where xxxi ∈ Rp denotes a p-dim sample, the

model parameters of TMM ΨΨΨ can be estimated by minimum the negative log likelihood,
i.e.,

min
ΨΨΨ
−

n∑
i=1

log

g∑
j=1

πjt(xxxi; νj,µµµj,ΣΣΣj), (1)

which can be solved by EM algorithm.

Self-paced Learning

The objective function can be written as
n∑
i=1

vi`i + f (vvv, λ)

where vi is learning weight of xxxi, `i is negative log likelihood of xxxi, f (vvv, λ) is a regularizer,
if
• f (vvv, λ) is convex with respect to vi ∈ [0, 1];
• v?(λ, `) is monotonically decreasing with respect to `, and it holds that log( ` →

0)v?(λ, `) = 1,log( `→ inf)v?(λ, `) = 0;
• v?(λ, `) is monotonically increasing with respect to λ, and it holds that log( λ →

0)v?(λ, `) = 0,log( λ→ inf)v?(λ, `) = 1, where v?(λ, `) = arg minv∈[0,1] v` + f (vvv, λ).

The Proposed Model

Objective Function

The objective function is given by

E(vvv;ΨΨΨ, λ) = −
n∑
i=1

vi log

g∑
j=1

πjt(xxxi; νj,µµµj,ΣΣΣj) − λ||vvv||1

where ΨΨΨ = {πππ,ννν,µµµ,ΣΣΣ}; λ is a hyper-parameter, as a threshold when fixing ΨΨΨ; v is the
learning weight, also the outlier indicator with v ∈ {0, 1}; λ||vvv||1 enforces the sparsity of
v since there exist only a few outliers in the training samples.

Optimization of vvv

Fixing ΨΨΨ, we estimate vvv by solving

min
vvv∈{0,1}

E(vvv;ΨΨΨ, λ) =

n∑
i=1

vi`i − λ||vvv||1

Considering vi ∈ {0, 1}, the problem can be written as

min
vvv∈{0,1}

n∑
i=1

vi(`i − λ)

It is obvious that the solution is

vi =

{
0 `i > λ,

1 `i ≤ λ.

Optimization of ΨΨΨ

Fixing vvv, we estimate ΨΨΨ by solving

min
ΨΨΨ
E(ΨΨΨ;λ,vvv)⇔ min

ΨΨΨ

n∑
i=1

vi`i − λ||vvv||1 ⇔ min
ΨΨΨ

n∑
i=1

vi`i

Use EM algorithm to optimize ΨΨΨ iteratively.

Summary of the algorithm

Input: dataset D = {xxxi, i = 1, 2, . . . , n}, learning pace a > 1, number of components
g

Output: ΨΨΨj(j = 1, 2, . . . , g)
Initialize ΨΨΨ by the result of k-means.
Initialize λ to the median of `i, i = 1, 2, . . . , n.
while ∆ΨΨΨ ' 000 do

while not converged do
Update vvv = arg maxvvv∈{0,1}E(vvv;ΨΨΨ, λ)).
while not converged do

E-step
Update τ̂ij and ûij, which are intermediate variables in TMM.
M-step
Update ΨΨΨ.

end
end
λ← aλ.

end

Experiments

On the synthetic dataset
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SPTMM
On real dataset

Clean Noisy

MSE W/B DB Dunn MSE W/B DB Dunn

k-means 2.80 0.28 0.59 2.35 3.55 0.69 0.72 2.06
GMM 2.87 0.28 0.60 2.37 4.67 1.16 1.81 0.63
TMM 2.93 0.29 0.61 2.37 4.66 0.81 1.41 0.89
SPTMM 2.55 0.29 0.61 2.37 2.94 0.53 0.34 2.30

Seeds dataset

Clean Noisy

MSE W/B DB Dunn MSE W/B DB Dunn

k-means 3.44 2.23 0.69 2.66 3.64 2.50 0.72 2.61
GMM 3.54 2.48 0.59 3.34 3.75 2.79 1.14 1.35
TMM 3.62 2.74 0.57 3.33 3.80 3.02 0.58 3.46
SPTMM 0.98 0.99 0.43 3.80 1.67 1.05 0.43 3.66

Thyroid dataset

Conclusions

In this paper, we depicted a novel model SPTMM which integrates the Self-Paced Learn-
ing mechanism into mixture of t distribution, in order to improve the mixture models’
ability of handling outliers. Given the model, we developed an EM based algorithm that
can solve the optimization problem in SPTMM efficiently. In addition to the mathemati-
cal justification, the experiments also display the value of the model. The results demon-
strated that SPTMM clearly outperforms K-means, GMM and TMM for estimating the
covariance matrix in the distributions. With respect to clustering, SPTMM is shown to be
the best performer in most cases, in particular for the data with outliers. In the future, we
would like to assess if SPTMM can be improved to perform better in a clean environment.


