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Abstract

The non-homogeneous Poisson process (NHPP)
is a point process with time-varying intensity
across its domain, the use of which arises in nu-
merous domains in signal processing, machine
learning and many other fields. However, its ap-
plications are largely limited by the intractable
likelihood and the high computational cost of ex-
isting inference schemes. We present an online in-
ference framework that utilises generative Poisson
data and sequential Markov Chain Monte Carlo
(SMCMC) algorithm, which achieves improved
performance in both synthetic and real datasets.

Non-homogeneous Poisson process

A non-homogeneous Poisson process over the do-
main S = RD of arbitrary dimension D possesses
the following attributes:
•A varying intensity function λ(s)
•Counting measure N(T ) evaluated over T ⊂ S
follows a Poisson distribution with parameter
λT =

∫
T λ(s) ds

•The counts of events in any disjoint subsets
Ti ⊂ S are independent random variables

which result in the following likelihood given a set
of K events denoted as {sk}Kk=1 in the region T :

p({sk}Kk=1 |λ(s), T ) = exp
{
−
∫
T
ds λ(s)

} K∏
k=1

λ(sk)

GOAL: obtain a Bayesian estimate of
the intensity function λ(s). But wait, the
likelihood is requiring the knowledge of λ(s) across
T while λ(s) is exactly what we want to know
–INTRACTABILITY!

Fortunately, we can still generate this process:
1 Generate homogeneous Poisson points {sn}Nn=1
with an upper-bound intensity λ∗.

2 Evaluate the local intensities {λ(sn)}Nn=1 at these
homogeneous points.

3 Perform thinning operation to obtain the
unbiased simulation of the NHPP.

Figure: NHPP Generation Scheme
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λ1(s)
mse 0.0257 0.129 0.0704
L(p) 1.825 – -9.440

Time (s) 15.86 0.01 60.23

λ2(s)
mse 0.6531 0.8599 1.5257
L(p) -248.1 – -326.6

Time (s) 60.05 0.05 1326.28

Table: Numerical results for models. Bold is the best.

Model

Inspired by the generative procedure, the Sigmoid Gaussian Cox Process (SGCP) was introduced in [1].
The model places a Gaussian process transformed by a maximum-intensity-scaled sigmoid function over the
intensity function to construct the generative joint probability using the concept of thinning. Define in ∈ {0, 1}
as the indicator associated with each (homogeneous) Poisson points, taking value 0 for the events retained in
thinning (input data points) and value 1 for ‘latent’ events rejected in thinning. We have

p({sn}Nn=1,g1:N , {in}Nn=1 |λ∗, T , θ) = (λ∗)N exp{−λ∗|T |}︸ ︷︷ ︸
(1)

×
N∏
n=1

σ
{

(−1)ing(sn)
}

︸ ︷︷ ︸
(2)

× p(g1:N | {sn}Nn=1, θ)︸ ︷︷ ︸
(3)

where {sn}Nn=1 is the time-ordered list of homogeneous Poisson points and g1:N is the vector of corresponding
g(sn) stochastic process values. In our model, we replace the heavy joint GP prior with a LTI state-space
prior of the form dg(t) = Ag(t)dt + h dW (t), where its Markovian property avoids the O(N 3) complexity
and aids the sequential inference formulations. Solved with stochastic integration, for two timestamps Q > P
we obtain:

g(Q) = eA(Q−P )
[
g(P ) +

∫ Q−P

0
e−Aτh dWτ

]
p
(
g(Q) |g(P )

)
= N

(
g(Q) |µ(Q,P ), C(Q,P )

)
More specifically, a powerful Langevin dynamics model is adopted in which gt = [g1,t g2,t]T

contains a stochastic trend (velocity) term g2,t; A =
[
0 1
0 θ

]
; and h = [0 σ]T .

Inference

We perform the posterior inference with the follow-
ing salient features:
•Sequential Markov Chain Monte Carlo algorithm
to make online inference and handle
high-dimensional sample space

•Mixture of Metropolis-within-Gibbs proposal and
joint proposal

•Perform batch inference with clustered points to
recover the temporal correlation

•Gibbs update of the maximum intensity λ∗ in
each batch

Results

Numerical results obtained from synthetic datasets
are shown in Table 1 with:
•λ1(s) = 2 exp{−s/15} + exp{−((s− 25)/10)2}
on the interval [0, 50] with 55 events.

•λ2(s) from a Langevin governed process with
parameters θ=−0.5, σ=0.5 on interval [0, 100]
with 156 events.

Furthermore, the proposed model is tested over a
small set of Limit Order Book (LOB) data taken
from the EUR-USD FOREX market on the 2nd of
September 2015.

Figure: λ1(s) Figure: λ2(s)

Figure: LOB Result

Conclusion

We have introduced a novel method for inferring the
intensity function in a NHPP, which shows improved
accuracy and efficiency compared to competing ap-
proaches. Moreover it is able to perform online in-
ference in computationally heavy tasks which are
challenging for the SGCP approach. The sequential
batch scheme further restores the local location in-
formation that is crucial in the inference of NHPP
and is usually ignored in standard sequential infer-
ence schemes.

Future Work

• Iteratively update the Langevin hyperparameters
to adapt to the datasets

•Make use of the first derivative g2,t for practical
applications

References

[1] R. Adams, I. Murray, and D. MacKay.
Tractable nonparametric Bayesian inference in Poisson
processes with Gaussian process intensities.
In Proceedings of the 26th Annual International
Conference on Machine Learning, pages 9–16. ACM,
2009.


