END-TO-END DYNAMIC QUERY MEMORY NETWORK FOR ENTITY-
VALUE INDEPENDENT TASK-ORIENTED DIALOG

& & R 3 A B
Chien-Sheng Wu, Andrea Madotto, Genta Winata, Pascale Fung s THE HONG KONG
Human Language Technology Center, Department of Electronic & Computer Engineering ﬁﬁ%’ﬁﬁﬁ'&%{é&f“ﬁ

Hong Kong University of Science and Technology

Introduction Contribution Framework Description
e Task-oriented dialog systems require ma- In this paper, we propose an end-to-end Dynamic , o o G
: : ' aw Dialog Histo \ e T e T it
chines to understand the human intent and Query Memory Network (DQMemNN) for task- ' U Bookatabbmpa_ri%form_o'_w 5 a Lo A e mAct.on Template. }‘5’{&
generate proper responses for an assigned oriented dialog systems with a Recorded Delexi- : S{/g”.xpreferenceonatypeofC“.'S'”e? i l g ? ", \_Candidates ] 3
. ] ) . . U: British, actually | would preferin Rome. | X
task via natural language. calization (RDL) mechanism. . S: ok let me look into some options. - F RN Y lapi call LOC-2. NUM-1. CUI-1
. . ' S:...7 Ans: api-call Rome, two, british ' |B — AL — 3 !
Traditionally, these dialog systems have been { DQMemNN is desianed to addr maior | | S ‘ == ==
built as a pipeline, with modules for language ar Ic? ) fIIS{/I ?T?II\?N'eb qna ne_f_s Oter a|JrO l = == exicalizatior
understanding, state tracking, action selection, AWLaCK OF Ve D¢ INSENSILVE 10 TePre “Knowledge Recorded B it 4 ]
- - sent temporal dependencies between memo- ge._, corded — S |
and language generation. However, modeling ies. which mav influence the conversational . Bases | |Delexicalization tnte RN ta feo M 4T [loct: par |
the dependencies between modules is com- > y LOC-2: Rome ! Response K
semantics. » NUM-1: two ' api-call Rome, two, british |

plex and expensive.

Recently, end-to-end approaches using recur-
rent neural networks [1, 2, 3] are attractive
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memory [4], can achieve promising results.
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