END-TO-END DYNAMIC QUERY MEMORY NETWORK FOR ENTITY-VALUE INDEPENDENT TASK-ORIENTED DIALOG

Chien-Sheng Wu, Andrea Madotto, Genta Winata, Pascale Fung Human Language Technology Center, Department of Electronic & Computer Engineering Hong Kong University of Science and Technology

Introduction

- Task-oriented dialog systems require machines to understand the human intent and generate proper responses for an assigned task via natural language.
- Traditionally, these dialog systems have been built as a pipeline, with modules for language understanding, state tracking, action selection, and language generation. However, modeling the dependencies between modules is complex and expensive.
- Recently, end-to-end approaches using recurrent neural networks [1, 2, 3] are attractive solutions. In particular, end-to-end memory **networks** (MemNNs), which are recurrent attention models over a possibly large external memory [4], can achieve promising results.

Dialog Example	Recorded Delexicalization			
Usr:HiSys:Hello what can i help you with today?Usr:Chinese cuisine in a moderate price range for fouSys:I'm on itUsr: <silence>Sys:Where should it be?Usr:Paris pleaseSys:Ok let me look into some options for youUsr:<silence>Sys:api_call Chinese Paris four moderateUsr:Instead could it be in Taiwan?Sys:Sure is there anything else to update?Usr:No</silence></silence>	The intuition of RDL is to replace entities in the raw dialog history with a simplified ordered tem- plates. Moreover, the number of system utter- ances can be reduced to a smaller size of action template candidates. [Cui-1] chinese [Pri-1] moderate [Num-1] four [Loc-1] Paris [Loc-2] Taiwan [Res-1] DimSum [Addr-1] 100_hk_St [Res-2] DinTaiFung [Addr-2] 101_Taipei_St			
Sys:Ok let me look into some options for youUsr: <silence>Sys:api_call Chinese Taiwan four moderateKB1:DimSum, rating, address, phone,</silence>	References			
KB2:DinTaiFung, rating, address, phone,KB2:DinTaiFung, rating, address, phone,KBN:SiChuan, rating, address, phone,Usr: <silence>Sys:What do you think of this option: DinTaiFung?Usr:Let's do itSys:Great let me do the reservationUsr:Can you provide the address?</silence>	 Seo et al. Query-reduction networks for question answering. <i>ICLR</i>, 2017. Antoine Bordes and Jason Weston. Learning end- to-end goal-oriented dialog. <i>ICLR</i>, 2017. Williams et al. Hybrid code networks: practical and efficient end-to-end dialog control with supervised 			
Sys:Here it is 101_Taipei_StreetUsr:Thank youSys:You are welcome	 and reinforcement learning. In ACL, 2017. [4] Sukhbaatar et al. End-to-end memory networks. In NIPS, 2015. 			

Contribution

In this paper, we propose an end-to-end **Dynamic** Query Memory Network (DQMemNN) for taskoriented dialog systems with a Recorded Delexicalization (RDL) mechanism.

- DQMemNN is designed to address one major drawback of MemNN: be insensitive to represent temporal dependencies between memories, which may influence the conversational semantics.
- 2. RDL is performed to reduce the learning complexity and to alleviate the out-of-vocabulary (OOV) entity problems.
- 3. Our framework achieves a promising average per-response accuracy of 99.7% and perdialog accuracy of 97.8% on bAbl Dialog dataset.

Results and Visualization

- The bAbl dialog dataset [2] is used to evaluate the performance of our model.
- Task 1-5 are issuing API call, refining API call, recommending options, providing additional information, and full-dialog, respectively.
- One test set follows the same distribution as the training set, and another has OOV words from a different knowledge base.
- All experiments used a 3-hop model with the adjacent weight sharing scheme. During training, all embedding matrices are jointly learned by minimizing a standard cross-entropy loss.

Task	QRN*[1]	MemNN[2]	GMemNN	HCN[3]	DQMemNN	DQMemNN+RDL
T1	99.4 (-)	99.9 (99.6)	100 (100)	-	100 (100)	100 (100)
<i>T2</i>	99.5 (-)	100 (100)	100 (100)	-	100 (100)	100 (100)
ТЗ	74.8 (-)	74.9 (2.0)	74.9 (3.0)	-	74.9 (2.0)	98.7 (90.8)
<i>T4</i>	57.2 (-)	59.5 (3.0)	57.2 (0)	-	57.2 (0)	100 (100)
<i>T5</i>	99.6 (-)	96.1 (49.4)	96.3 (52.5)	-	99.2 (88.7)	99.9 (98.3)
Test Avg.	86.1 (-)	86.1 (50.8)	85.7 (50.5)	_	86.3 (58.1)	99.7 (97.8)
T1-OOV	83.1 (-)	72.3 (0)	82.4 (0)	-	82.5 (0)	100 (100)
<i>T2-OOV</i>	78.9 (-)	78.9 (0)	78.9 (0)	-	78.9 (0)	100 (100)
T3-OOV	75.2 (-)	74.4 (0)	75.3 (0)	-	74.9 (0)	98.7 (90.4)
T4-OOV	56.9 (-)	57.6 (0)	57.0 (0)	-	57.0 (0)	100 (100)
<i>T5-OOV</i>	67.8 (-)	65.5 (0)	66.7 (0)	100 (100)	72.0 (0)	99.4(91.6)
st-OOV Avg.	72.4 (-)	69.7 (0)	72.1 (0)	_	71.8 (0)	99.6(96.4)

