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ABSTRACT

Automatic emotion recognition from speech is a challenging
task which relies heavily on the effectiveness of the speech
features used for classification. In this work, we study the
use of deep learning to automatically discover emotionally
relevant features from speech. It is shown that using a deep
recurrent neural network, we can learn both the short-time
frame-level acoustic features that are emotionally relevant, as
well as an appropriate temporal aggregation of those features
into a compact utterance-level representation. Moreover, we
propose a novel strategy for feature pooling over time which
uses local attention in order to focus on specific regions of
a speech signal that are more emotionally salient. The pro-
posed solution is evaluated on the IEMOCAP corpus, and is
shown to provide more accurate predictions compared to ex-
isting emotion recognition algorithms.

Index Terms— Emotion Recognition, Deep Recurrent
Neural Networks, Attention mechanism

1. INTRODUCTION

The emotional state of human beings is an important factor
in their interactions, influencing most channels of communi-
cation such as facial expressions, voice characteristics, and
the linguistic content of verbal communications. Speech is
one of the primary faucets for expressing emotions, and thus
for a natural human-machine interface, it is important to rec-
ognize, interpret, and respond to the emotions expressed in
speech. Emotions influence both the voice characteristics as
well as linguistic content of speech. In this study, we focus
on the acoustic characteristics of speech in order to recognize
the underlying emotions.

A lot of research on speech emotion recognition (SER)
has been focused on the search for speech features that are in-
dicative of different emotions [1, 2]. While a variety of both
short-term and long-term features have been proposed [3],
it is still unclear which features are more informative about
emotions. Traditionally, the most popular approach has been
to extract a large number of statistical features at the utterance
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Table 1. Common low-level descriptors (LLDs) and high-
level statistical functions (HSFs) for SER.

pitch (Fy), voicing probability, energy,
zero-crossing rate, Mel-filterbank features,
MFCCs, formant locations/bandwidths,
harmonics-to-noise ratio, jitter, etc.

mean, variance, min, max, range, median,
quartiles, higher order moments (skewness,
kurtosis), linear regression coefficients, etc.

LLDs

HSFs

level, apply dimension reduction techniques to obtain a com-
pact representation, and finally perform classification with a
standard machine learning algorithm [4, 5, 10]. More specif-
ically, the feature extraction consists of two stages. First, a
number of acoustic features that are believed to be influenced
by emotions are extracted from short frames of typically 20 to
50 msec. These are often referred to as Low-Level Descrip-
tors (LLD). Next, different statistical aggregation functions
(such as mean, max, variance, linear regression coefficients,
etc.) are applied to each of the LLDs over the duration of the
utterance, and the results are concatenated into a long feature
vector at the utterance level. The role of these high-level sta-
tistical functions (HSF) is to roughly describe the temporal
variations and contours of the different LLDs during the ut-
terance. The assumption here is that emotional content lies in
the temporal variations, rather than static values of short-term
LLDs. Different classification methods have been used to cat-
egorize the obtained utterance-level features [3], with SVMs
being one of the most popular choices in SER. Table 1 lists
some examples of LLDs and HSFs commonly used for SER.

Recently, there has been growing interest to apply deep
learning to automatically learn useful features from emo-
tional speech data. The authors in [6] used a Deep Neural
Network (DNN) on top of traditional utterance-level statis-
tical features to improve the recognition accuracy compared
to conventional classifiers such as Support Vector Machines
(SVM). The works in [7] and [8] used deep feed-forward and
recurrent neural networks (RNN) at the frame level to learn
the short-term acoustic features, followed by traditional map-



ping to a sentence-level representation using extreme learning
machines (ELM). In [9], the authors used both convolutional
and recurrent layers to learn the mapping directly from time-
domain speech signals to the continuous-valued circumplex
model space of emotion.

One issue that appears to still puzzle researchers applying
deep learning framework in SER, is how to effectively bal-
ance the short-term characterization at the frame level and
long-term aggregation at the utterance level. Two bidirec-
tional LSTM layers were used in [9] to transform short-term
convolutional features directly into continuous arousal and
valence output. However, works in [7] and [8] have both ap-
plied ELM for the utterance level aggregation, despite the fact
that they already adopted a CTC-style recurrent network un-
derneath [8]. The challenge lies in how speech emotion data
are typically tagged. In most SER data sets, the emotion la-
bels are given at the utterance level. However, an utterance
often contains many short silence periods, and in many cases
only a few words in the utterance are emotional, while the
majority of the rest are emotionless. The silence periods can
be addressed using a voice activity detector (VAD) [7], or by
null label alignment [8], however, we are not aware of any
work in the past that explicitly handles emotionally-irrelevant
speech frames.

In this paper, we combine bidirectional LSTM with a
novel pooling strategy using an attention mechanism which
enables the network to focus on emotionally salient parts of a
sentence. With the attention model, our network can simulta-
neously ignore silence frames and other parts of the utterance
which do not carry emotional content. We conduct experi-
ments on the the IEMOCAP corpus [12] by comparing var-
ious approaches, including frame-wise training, final-frame
LSTM training, mean-pooling, and the proposed approach,
weighted-pooling with local attention. Our preliminary re-
sults show that in general adding a pooling layer on top of
the LSTM layers produces the better performance, and the
weighted pooling with attention model further improves over
mean-pooling by about 1-2% on IEMOCAP.

2. EMOTION RECOGNITION USING RECURRENT
NEURAL NETWORKS

Most of the features listed in Table 1 can be inferred from
a raw spectrogram representation of the speech signal. It is
therefore reasonable to assume that given a fixed set of (differ-
entiable) HSFs and sufficient data, similar short-term features
can be learned from a raw spectral representation. Fig. 1(a)
shows an example structure to learn short-term LLDs, using a
few layers of dense nonlinear transformations. Note that the
statistical functions in the context of neural networks function
as pooling layers over the time dimension.

For the rest of the paper, we will focus mostly on learning
both short term LLDs and long-term aggregation. We study
the use of recurrent networks which can effectively remem-

ber relevant long-term context from the input features. The
RNN output nodes in this case are expected to represent dif-
ferent long-term integrations over the frame-level LLDs. The
challenge that arises with such a structure is how to train the
network parameters, since the emotion labels are at the utter-
ance level, which may not be blindly used at the frame-level.
In the following, we discuss different approaches to address
this issue.

2.1. Frame-wise training

The most naive approach is to assign the overall emotion to
each and every frame within the utterance, and train the RNN
in a frame-wise manner by back-propagating cross-entropy
errors from every frame (Fig. 1(b)). However, it is not rea-
sonable to assume that every frame within an utterance repre-
sents the overall emotion. This is both because there are short
pauses (silence frames) within the utterance, and because the
overall emotion decision for a training example is often influ-
enced only by a few words which strongly show the emotion,
as opposed to the whole utterance. Second, since we are as-
suming the RNN outputs to be long-term aggregations over
the input LLDs, we should not expect the outputs to have the
desired long-term representation starting from the first frame.
Rather, the RNN should be given enough past history (input
context) until it can produce the correct representation.

2.2. Final-frame (many-to-one) training

An alternative to frame-wise training is to only pick the fi-
nal RNN hidden representation at the last frame and pass it
through the output softmax layer. The errors are then back-
propagated to the beginning of the utterance. Fig. 1(c) shows
such a structure, in which the final output at each direction
is used, since the recurrent layer we adopted is bi-directional.
Although this approach ensures that the RNN receives suf-
ficient context before being expected to produce the desired
representation, it still assumes that all parts of the utterance
perfectly exhibit the overall emotion. As an example, if a sen-
tence starts with a strong happy emotion but the emotion fades
towards the end, the RNN output will start to diverge from
the desired representation of happy as it encounters the non-
emotional frames towards the end of the utterance. Therefore,
relying only on the final frame of the sequence may not fully
capture the intended emotion.

2.3. Mean-pooling over time

Instead of computing the cross-entropy error at all frames
or the last frame, it is possible to perform a mean-pooling
over time on the RNN outputs, and pass the result to the fi-
nal softmax layer (Fig. 1(d)). This assumes there are suf-
ficient correct RNN outputs within the utterance to domi-
nate the average value. It will be shown in section 3 that
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Fig. 1. Architectures for applying DNN/RNN for SER. (a) Learning LLDs using fixed temporal aggregation. (b) frame-wise
training. (c) final-frame (many-to-one) training. (d) Mean-pooling in time. (e) Weighted pooling with logistic regression

attention model. (f) general attention model.

this simple mean pooling strategy provides considerably bet-
ter results compared to frame-wise and final-frame training.
However, this approach still suffers from the problems dis-
cussed above, namely the presence of silence frames and non-
emotional speech frames within the utterance. Including these
frames in the overall mean pooling will distort the desired rep-
resentation for the emotion.

2.4. Weighted-pooling with local attention

Inspired by the idea of attention mechanisms in neural ma-
chine translation [11], we introduce a novel weighted-pooling
strategy to focus on specific parts of an utterance which con-
tain strong emotional characteristics. Instead of mean pool-
ing over time, we compute a weighted sum where the weights
are determined based on an additional set of parameters in an
attention model. Using a simple logistic regression as the at-
tention model, the solution can be formulated as follows.

As shown in Fig. 1(e), at each time frame ¢, the inner prod-
uct between the attention parameter vector u and the RNN
output y; is computed, and interpreted as a score for the con-
tribution of that frame to the final utterance-level represen-
tation of the emotion. A softmax function is applied to the
results to obtain a set of final weights for the frames which
sum to unity:

exp(uly;)
ay = 7 : ey
> exp(ullyr)
The obtained weights are used in a weighted average in time
to get the utterance-level representation:

T
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The pooled result is finally passed to the output softmax
layer of the network to get posterior probabilities for each
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Fig. 2. Local attention weights for two test examples. Top:
the raw waveform; bottom: the attention weight «(t) over
time.

emotional class. The parameters of both the attention model
(u in Eq. (1)) and the RNN are trained together by back-
propagation. Note that the weighted pooling described here
was based on a simple logistic regression attention model.
However, given sufficient data, it is possible to use more so-
phisticated (i.e. deeper) models for attention (Fig. 1(f)).

Fig. 2 illustrates the obtained attention weights (o) to-
gether with the corresponding waveforms for two different
test examples. The obtained weights indicate that the intro-
duced attention-based pooling achieves two desirable prop-
erties necessary for an RNN-based dynamic classfication of
emotions. First, the silence frames within the signals are
automatically assigned very small weights and effectively
ignored in the pooling operation, without the need for any ex-
ternal mechanism such as VAD. Moreover, the speech frames
are also assigned different weights based on how emotional
they have been decided to be. So the attention model does
not focus on energy only, and it is capable of considering the
emotional content of different portions of speech.



3. EXPERIMENTS

To assess the performance of the introduced RNN-based SER
architectures, we perform speaker-independent SER experi-
ments using [IEMOCAP dataset [12]. The corpus is organized
in 5 sessions, in each of which two actors are involved in
scripted scenarios or improvisations designed to elicit spe-
cific emotions. We use audio signals from four emotional
categories of happy, sad, neutral, and angry. Four sessions
of the corpus are used for training, and the remaining session
used for testing. The experiments apply both raw spectral
features (257-dimensional magnitude FFT vectors), as well
as hand-crafted LLDs commonly used for SER, consisting of
fundamental frequency (Fp), voicing probability, frame en-
ergy, zero-crossing rate, and 12 Mel-frequency Cepstral Co-
efficients (MFCC). Together with their first order derivatives,
this makes 32-dimensional LLDs for each frame. Both of
these frame-level features are extracted from 25 msec seg-
ments at a rate of 100 frames/sec, and normalized by the
global mean and standard deviations of neutral speech fea-
tures in the training set.

As a baseline SER system, we use a SVM classifier with
Radial Basis Function (RBF) kernel on utterance-level fea-
tures obtained by applying fixed statistical functions to the
hand-crafted LLDs (mean, std, min, max, range, extremum
positions, skewness, kurtosis, and linear regression coeffi-
cients). The train data is imbalanced with respect to the
emotional classes, so we use a cost-sensitive training strategy
in which the cost of each example is scaled according to the
number of examples in that category. Since the test sets are
also imbalanced, we report both the overall accuracy on test
examples (weighted accuracy, WA) as well as average recall
over the different emotional categories (unweighted accuracy,
UA). We use Rectified Linear (ReLU) dense layers with 512
nodes for LLD learning, and Bi-directional Long Short-Term
Memory (BLSTM) recurrent layers with 128 memory cells
for learning the temporal aggregation, with 50% dropout on
all layers during training to prevent over-fitting.

Table 2 compares the classification performance of learned
and hand-crafted LLDs with different fixed HSFs for tempo-
ral aggregation. The learned LLDs with a softmax classifier
provide better accuracy in most cases compared to conven-
tional emotion LLDs with a SVM. Also, while the SVM
approach necessarily needs a large number of HSFs to reach
its peak performance, the DNN solution is less sensitive to the
number and diversity of the used HSFs. The results in Table 3
with hand-crafted LLDs focus on learning the temporal aggre-
gation task with recurrent layers. Frame-wise and final-frame
training provide lower accuracies because they assume all
frames carry the overall emotion and they include the silence
frames. Mean-pooling in time can in principle have the same
problems, but in practice provides significantly higher accu-
racies, since for short and carefully segmented IEMOCAP
examples, the intended emotion is sufficiently dominant in
a global mean pool. The proposed attention-based weighted

Table 2. Accuracy comparison between hand-crafted LLDs
and learned LLDs from raw spectral features.

Features Classifier HSFs WA UA
Mean 56.4% 53.4%
raw spectral  DNN®>  Mean, Min, Max ~ 59.3% 54.9%
Full 583% 54.4%
Mean 533% 49.3%
emotion LLDs SVM Mean, Min, Max 55.4% 52.9%
Full 57.8% 55.7%

! Mean, std, min, max, range, skewness, kurtosis.
2 Two relu hidden layers of 512 nodes (Fig. 1(a)).

Table 3. Accuracy comparison between RNN architectures

Features Temporal aggregation WA UA

RNN-frame-wise (Fig.1(b)) 57.7% 53.8%
raw spectral RNN-final frame (Fig.1(c)) 54.4% 49.7%
RNN-mean pool (Fig.1(d)) 56.9% 55.3%
RNNTwelgk'lted pool with 618% 56.3%

attention (Fig.1(e))
RNN-frame-wise (Fig.1(b)) 572% 51.6%
emotion  RNN-final frame (Fig.1(c)) 53.0% 54.9%
LLDs RNN-mean pool (Fig.1(d)) 62.7% 57.2%
RNN-weighted pool with 635% 58.8%

attention (Fig.1(e))

pooling strategy outperforms all other training methods by
focusing on emotional parts of utterances. Compared with
traditional SVM solution, the proposed algorithm achieves
+5.7% and +3.1% absolute improvements in WA and UA,
respectively. Also presented in Table 3 are the results of
jointly learning both LLDs and temporal aggregation from
raw spectral data by a deep network of two hidden relu layers
followed by a BLSTM layer. Although the joint learning
provides slightly lower performance here, we attribute it to
the lack of sufficient training examples to learn the param-
eters for both tasks. Given sufficient training examples, the
parameters of short-term characterization, long-term aggre-
gation, and the attention model can be jointly optimized for
best performance.

4. CONCLUSIONS

We presented different RNN architectures for feature learning
in speech emotion recognition. It was shown that using deep
RNNSs, we can learn both frame-level characterization as well
as temporal aggregation into longer time spans. Moreover,
using a simple attention mechanism, we proposed a novel
weighted time-pooling strategy which enables the network to
focus on emotionally salient parts of an utterance. Experi-
ments on [IEMOCAP data suggests that the learned features
provide better classification accuracy compared to traditional
SVM-based SER using fixed designed features.
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