
Sequential Adaptive Detection for In-situ transmission electron microscopy
Y. Cao? S. Zhu? Y. Xie? J. Key† J. Kacher† R. R. Unocic‡ C. M. Rouleau‡

? School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
† School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

‡Oak Ridge National Laboratory, Oak Ridge, TN, USA.

Objectives
•Develop statistically efficient and computationally simple
sequential change-point detection algorithm for for detecting
transient sparse signals in Transmission Electron Microscopy
(TEM) video sequences.

Introduction

Transmission Electron Microscopy (TEM) has long been a powerful tool
for imaging material structure and characterizing material chemistry.
Recent advances in electron detector technology and computational
capacity have facilitated the development of high-speed data collection
with microsecond frame rate acquisition speeds. Because of this, in-situ
processing of the real-time collected data to detect emerging features
become a highly desired property for the new TEM system. Currently,
the data are captured real-time but analyzed off-line. We present a
sequential adaptive change detection method for in-situ TEM signal
detection. The method is developed by adapting the recent one-sample
update based sequential detector.

Figure 1: Diagrams demonstrating the basic principles of bright field imaging in TEM.
TEM can operate in two modes, illustrated in Left Panel: in the real space; Right
Panel: in the diffraction space. The real space images can be computed from the
diffraction space images. The incident beam of electrons passes through the sample
and a lens/aperture system is used to form the image.

5.4 Real-data example

In this section, we consider a sequence of metal corrosion images captured using nanoprobe electron
beam technology7. For illustration purposes, we downsize each image to 308-by-308 pixels. There are
23 gray images (frames) in the sequence and 2 frames per second. Hence, this corresponds to 11.5
seconds from the original video. At some point, a rust point appears in the image sequence. Sample
images from the sequence are illustrated in Fig. 1.

In the example, we set the error tolerance " = 0.01, and let # = 0.5. To evaluate detection
performance, we run 3000 Monte Carlo trials and add Gaussian noise to images. To estimate the
noise variance �2, we choose two noisy images early in the sequence (hence we can assume they do
not contain a rust dot), subtract them (hence get rid of the mean), and use the mean square values
of the di↵erence image to estimate �2, which we set to be 30.

Since the rust signal is local, i.e., when it occurs, a cluster of pixels capture the rust, we will
apply our detector in the following scheme. Break each image into (rectangular or square) patches of
equal size. Design a quadratic detector as described above for a patch. Then at each time, whenever
one patch detects a chance, we claim there has been a change - this corresponds to a “multi-sensor”
scheme and the local detection statistic by taking their maximum. Fig. 2 illustrated the expected
detection delay (EDD) versus the number of patches. In all instances, the false-detection-rate and
miss-detection-rate are both zero. Note that when the number of patches is greater than 25, we can
detect the change immediately after it occurs (the delay is only 1 sample).
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Figure 1: A sequence of metal corrosion images captured using nanoprobe electron beam technology.
The time (index for the image in the sequence) is labeled; the rust initially starts at time t = 8 (marked
by red circle) and develops over time. The rust signal has higher intensity than the background.

6Data courtesy of Josh Kacher at Georgia Institute of Technology
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Figure 2: A sequence of metal corrosion images captured using bright-field TEM. The
time (index for the image in the sequence) is labeled; the corrosion initiates at time t
= 8 (marked by the red circle) and develops over time. The corroded area has a higher
intensity signal than the rest of the film.

Problem formulation

Formally speaking, the sequential change-point detection problem can
be cast into the following hypothesis test:

H0 : X1, X2, . . .
i.i.d.∼ N (0, Id),

H1 : X1, . . . , Xν
i.i.d.∼ N (0, Id),

Xν+1, Xν+2, . . .
i.i.d.∼ N (θ, Id), θ ∈ A.

(1)

where the post-change mean θ is unknown and belong a set A defined
as A = {θ : ‖θ‖0 ≤ s}, where ‖ · ‖0 is the number of non-zero entries
of θ and s is a prescribed value to characterize the sparsity.

Proposed method

The key idea is to incorporate an adaptive likelihood ratio test in the
detection procedure (e.g., [Lorden and Pollak, 2005]). The likelihood
ratio at time t for a hypothetical change-point location k is given by

Λk,t =
t∏
i=k

fθ̂k,i−1
(Xi)

fθ0(Xi)
, θ̂k,k−1 = θ0,

where θ̂k,i is a function of the observations {Xk, . . . , Xi} that is com-
puted by mirror descent in Algorithm 1 (assuming Xk is the first in-
put). This is a one-sample update that can be computed very efficiently
given one new observation. Then, our detection procedures are adap-
tive CUSUM (ACM) procedure:

TACM(b) = inf
{
t ≥ 1 : max

1≤k≤t
log Λk,t > b

}
,

where b is a prescribed threshold.

Online mirror descent to estimate θ̂k,i

Preprocessing
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Figure 3: Left: a diffraction domain image; Middle: the histogram of the intensity;
Right: The thresholded image if we only keep pixels of value in (0, 0.2).
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Figure 4: Background removal: we threshold a diffraction space image with different
range of threshold values, and this yields rings at different radii. These concentric rings
help to estimate their common center, and subsequently we subtract off the bright
rights to remove these bright rings.

Figure 5: The extracted signals for the sequence of 100 images (selected angles).

Result

Domain knowledge tells us that the change happens at time t = 17.
Our ACM procedure stop at t = 18. Classic CUSUM stop at t = 24
and classic GLR procedure raise an false alarm at t = 10.


