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Objectives

« Develop statistically efficient and computationally simple
sequential change-point detection algorithm for for detecting
transient sparse signals in Transmission Electron Microscopy
(TEM) video sequences.

Introduction

Transmission Electron Microscopy (TEM) has long been a powerful tool
for imaging material structure and characterizing material chemistry.
Recent advances in electron detector technology and computational
capacity have facilitated the development of high-speed data collection
with microsecond frame rate acquisition speeds. Because of this, in-situ
processing of the real-time collected data to detect emerging features
become a highly desired property for the new TEM system. Currently,
the data are captured real-time but analyzed off-line. We present a
sequential adaptive change detection method for in-situ TEM signal
detection. The method is developed by adapting the recent one-sample

update based sequential detector.
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Figure 1. Diagrams demonstrating the basic principles of bright field imaging in TEM.
TEM can operate in two modes, illustrated in Left Panel: in the real space; Right
Panel: in the diffraction space. The real space images can be computed from the
diffraction space images. The incident beam of electrons passes through the sample

and a lens/aperture system is used to form the image.
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Figure 2: A sequence of metal corrosion images captured using bright-field TEM. The
time (index for the image in the sequence) is labeled; the corrosion initiates at time t
= 8 (marked by the red circle) and develops over time. The corroded area has a higher

intensity signal than the rest of the film.

fQak Ridge National Laboratory, Oak Ridge, TN, USA.

Problem formulation

Formally speaking, the sequential change-point detection problem can

be cast into the following hypothesis test:
Hy o X1, Xo, ... 5 N(0, 1),

Hi: X1, X, = N0, 1), (1)

Xpits Xpios .. RON(0, 1), 0€ A

where the post-change mean 6 is unknown and belong a set A defined
as A =160 :10|lg < s}, where || - ||g is the number of non-zero entries
of 6 and s is a prescribed value to characterize the sparsity:.

Proposed method

e

I'he key idea is to incorporate an adaptive likelihood ratio test in the
detection procedure (e.g., [Lorden and Pollak, 2005]). The likelihood
ratio at time ¢ for a hypothetical change-point location £ is given by

 fg, (X0)

O x—1 = 0o,

where 0}, ; is a function of the observations { X, ..., X;} that is com-
puted by mirror descent in Algorithm 1 (assuming X} is the first in-
put). This is a one-sample update that can be computed very efficiently
oiven one new observation. Then, our detection procedures are adap-

tive CUSUM (ACM) procedure:

TACM(b) — inf {If > 1 max 10g /\]Wg > b} ;

1<k<t

where b is a prescribed threshold.

Online mirror descent to estimate 0

Algorithm 1 Online mirror-descent (OMD) for {6}

Require: A sequence of data X,... € R% a closed and
convex set I' C R? of the parameters; a decreasing se-
quence {7 }:>1 of strictly positive step-sizes.

1: Ok g—1 = 0, Ak ;1 = 1. {Initialization }

2: forallt=k,k+1,...,do

3:  Acquire a new DbEEﬁEﬂﬂﬂ X t )

4:  Compute loss £;(0k,¢e—1) = ||0k-1[3/2 — 07, X

3: CD[’[IPI][E ﬂk,t :ﬂk,t—l X fgk_t_l(Xt)ffD[Xt)

6:  Opt= é.ﬁ:,t—l — 1 [§k1¢_1 — X;) {Dual update}

7. Ops = argmin, - |u — B ¢||2 {Projected primal up-
date }

8: end for

9: return {ﬁ.ﬁ:,t}tgl and {ﬂk,t}tzlt

Preprocessing
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Figure 3: Left: a diffraction domain image; Middle: the histogram of the intensity;
Right: The thresholded image if we only keep pixels of value in (0, 0.2).
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Figure 4: Background removal: we threshold a diffraction space image with different
range of threshold values, and this yields rings at different radii. These concentric rings
help to estimate their common center, and subsequently we subtract off the bright

rights to remove these bright rings.
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Figure 5: The extracted signals for the sequence of 100 images (selected angles).

Result

Domain knowledge tells us that the change happens at time ¢ = 17.
Our ACM procedure stop at ¢ = 18. Classic CUSUM stop at ¢t = 24
and classic GLR procedure raise an false alarm at ¢ = 10.




