Software Defined Resource Allocation for Service-Oriented Networks

Motivation

e loday's networks must support diverse service requirements,
each service consists of a predefined service function chain (SFC).

e Traditional specialized network hardware provides dedicated network
services = 1t Is costly and inflexiblel

e Network function virtualization (NFV) [1]: intelligently integrate a
variety of network resources to establish a virtual network (VN) for
each request.

e Joint VN embedding and resource allocation [2, 3, 4]:
¢ select function nodes for service function instantiation
¢ route traffic such that each flow gets processed at function nodes
in the order defined in the corresponding SFC

Main Contribution

e Perform joint VN embedding and traffic engineering for service-
oriented networks.

e Propose a novel problem formulation taking practical network con-
straints into consideration.

e Show NP-hardness of the formulated problem.

e Develop an efficient penalized successive upper bound minimization
(PSUM) algorithm with convergence guarantee.

System Model
e Flow k shall be transmitted from S (k) to D(k) with rate \(k)

o SFC of flow k: F(k) = (fF — -« — k)
e The set of function nodes that can provide function f: 1}

e Binary variable indicating whether function node 7 provides function
f for flow k: z; ¢(k)

o Rate of virtual flow (k, f) over link (7, 7): 7;;(k, f)

S(k) D (k)

: flow (k,fo) . flow (k,fl) . flow (k;fz) O

Prmlride fl Pro‘glride fz _— path
. NFV-enabled node

o Rate of flow & over link (i,7): rij(k) = >_ e ry rij(k, ) (1)

e In order to reduce communication overhead, each flow k gets served
by exactly one node for each f € F(k): > oy, ziy(h) =1 (2)

e Each function node provides at most one function for each flow:
2 Tig(k) <1 (3)

System Model (Cont.)
e Link capacity constraint: Zk ’m'j(/f) < Oy

(

4)
o Node capacity constraint: > , Zf z; r(k)AE) <

i (5)

e Network flow conservation constraints:

ARz (k)= Y rjalk, fly) = Y ri(k, f2y) (6
7:(4,0)EL g:(i,7)EL

MNE)a pe(k) = > vk, f5) = > ik, f£)(7)
g:(i,7)EL j:(g2)eL

Y sk f5) = AE) (8)

J:(S(k),j)eL

Y ripwk ) = Ak) (9)

J:(4,D(k))eL

Flow: (k,fsk_l) ﬂ (kﬁfsk) (k,fsk_l) o(krfsk—l)i
Rate: A(k) A(k) A A

Case 1. X; rk (k) =1 Case 2. X; £k (k) =0

Problem Formulation and Analysis

min g(r) =) > ri(k)
| k- (i,5)

st. (1) —(9), (P)
Tij(k) > Ovrij(kvf) > 0, V(ZJ) € L,

v 1(k) € {0,1}, V&, Vf, Vi.

e Joint VN embedding and resource allocation

e [he total link rate objective avoids cycles in choosing routing paths.
e The problem of checking the feasibility of (P) is NP-hard (Proved).
e Suppose ji; > i for all 7, and C;; > C for all (i, 7), where

K K
n=>Y Mk), C=
k=1 k=1

and |F (k)| denotes the number of functions in F(k). Then the LP
relaxation of problem (P) always has a binary solution of {x; ¢(k)}.

AR)(IF(R)| + 1), (10)

e The above result suggests that, if the link and node capacity are suf-
ficiently large, then problem (P) and its LP relaxation are equivalent.

e The above lower bounds in (10) are tight.
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PSUM Algorithm

o Relax binary variables {z; ((k)} to be real and add a penalty term
to the objective function:

= Xp(k) == (i f(F))iev;, then (2) < [[x;(F)[l; =1
— Fact [5]: Forany p € (0,1), € > 0, the optimal solution of the
following problem must be binary:

min |xg(k) + €lf[y == > (i (k) +¢€)?
1€V

st |x;(k)|[ = 1,2 7(k) €[0,1], Vi € V.

e Penalized problem:
Join g, (2) = g(r) + o Fe(x)
s.t. (1) —(9),
rii(k) > 0,7k, f) >0, V(2,5) € L,
v r(k) € 0,1, Vk, V[, Vi,
where the penalty term:

Px) =3 3 Ixs(k) + €1,

k  feF(k)

(P1)

e Convergence analysis: Suppose the positive sequence {o;} is mono-
tonically increasing and o; — 400, and z! is a global minimizer of
the penalized problem (P1) with the objective function g,,(z). Then
any limit point of {z'} is a global minimizer of problem (P).

e Successive Upper bound Minimization (SUM) [6]: solve a sequence
of approximate objective functions which are lower bounded by g, (z):

P.(x) < P.(x') + VP.(x")" (x — x")

e PSUM subproblem at the (¢ 4 1)-th iteration:
min ¢(r) + 01 VP, (x)"x

r,X

s.t. (1) —(9),
Tij(k)zoarij(kaf>207 \V/(Z,])EE,
ajz,f(k) = [07 1]7 \V/k7 \v/fv \V/Z,

where Ot41 = YO¢, €11 = 1€

e PSUM-R: combine PSUM with a Rounding technique

t+1

(PSUM_sub)

1. Perform t¢,,,. PSUM iterations to obtain {(ii,f(k))iévf};

2. For nonbinary x;(k): if 7, ;(k) = max;ecy, Z; s (k) > 0, then set
z; ¢(k) = 1; otherwise find the node v € V; with the maximum
remaining computational capacity and set x, ((k) = 1;

3. Determine r: solve (P) with x being fixed and the objective
function being g+ 7A, and modify (4) by >, 7.,(k) < Ci; + A.
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Simulation Results

e Simulation scenario: a mesh network

— 100 nodes and 684 direct links
— b service functions, |V¢| = 10 candidate nodes for each function

— F(k) = (ff — f¥) and (S(k), D(k)) are uniformly randomly
chosen for each flow (fy" # f3,S(k), D(k) ¢ Vir,s = 1,2)

— Parameter setting:
30, AM(k)=1,Vk
e Compare with the modified heuristic algorithm in [3].

e Parameters setting: 1.« = 20, 01 =2, ¢t =0.001, v =1.1, n =
0.5, tmax =7, 6 =09, 7 =05.

e Randomly generate 50 instances of problem (P).
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Left: the averaged number of fractional components varies with iterations;
Right: the number of simulations with gfcun/91p < € varies with &.

e The solutions returned by PSUM gradually converge to some feasible
binary solutions.

e In 50 simulations, PSUM and PSUM-R successfully find the feasible
solution 48 times while the heuristic algorithm only succeeds 9 times.

e PSUM can approximately solve problem (P) by returning a feasible
solution with good quality and is easily implemented.

e PSUM-R achieves a good balance of solution quality and algorithm
efficiency.

References

[1] M. Chiosi, D. Clarke, P. Willis, A. Reid, J. Feger et al. Network Functions Virtualization:
Introductory White Paper. SDN and OpenFlow World Congress, Darmstadt, Germany, Oct.
2012.

2] H. Zhang, S. Vrzic, G. Senarath, N. D. Dao, H. Farmanbar, J. Rao, C. Peng, and H. Zhuang.
5G Wireless Network: MyNET and SONAC. IEEE Network, vol. 29, no. 4, pp. 14-23, Jul. 2015.

3] X. Li, J. Rao, and H. Zhang. Engineering Machine-to-Machine Traffic in 5G. IEEE Internet of
Things Journal, vol. 3, no. 4, pp. 609-618, Aug. 2016.

[4] M. Charikar, Y. Naamad, J. Rexford, and X. K. Zou. Multi-commodity Flow with In-network
Processing. Manuscript, www.cs.princeton.edu/~ jrex/papers/mopti4.pdf.

[5] B. Jiang, Y.-F. Liu, and Z. Wen, Lp-norm regularization algorithms for optimization over per-
mutation matrices. SIAM Journal on Optimization, vol. 26, no. 4, pp. 2284-2313, 2016.

M. Razaviyayn, M. Hong, and Z.-Q. Luo. A Unified Convergence Analysis of Block Successive

Minimization Methods for Nonsmooth Optimization. SIAM Journal on Optimization, vol. 23,
no. 2, pp. 1126-1153, 2013.




