Unsupervised Domain Adaptation via Domain Adversarial Training for Speaker Recognition

Qing Wang1,2, Wei Rao2, Sining Sun1, Lei Xie1, Eng Siong Chng2,3, Haizhou Li4

1School of Computer Science, Northwestern Polytechnical University, Xian, China
2Temasek Laboratories@NTU, Nanyang Technological University, Singapore
3School of Computer Science and Engineering, Nanyang Technological University, Singapore
4Department of Electrical and Computer Engineering, National University of Singapore, Singapore

18 April, 2018
Outline

- Introduction
- Proposed Method
- Experimental Setup and Result
- Conclusions
Conventional approaches of speaker recognition usually assume that training and evaluation data share the same probability distributions or the same feature space.

However, in the real-world application, there is always a mismatch between the training and evaluation datasets, which leads to the domain mismatch in speaker recognition.

Domain adaptation is seen as a solution to alleviate the domain mismatch,
Domain adaptation for speaker recognition

- Training dataset \(\rightarrow\) Source domain
- Evaluation dataset \(\rightarrow\) Target domain

According to the availability of labels in target domain:

- Supervised domain adaptation
- Unsupervised domain adaptation
 - Use clustering techniques to estimate speaker label of unlabeled target domain data.
 - Select the unlabeled target and source domain data to estimate a compensation model to compensate the domain mismatch.
 - Learn the domain-invariant space or map the source domain data into target domain space and use the mapped source domain data with its speaker label to train LDA or PLDA.
 - Autoencoder based Domain Adaptation (AEDA): adapt source domain data to target domain.
Apply Domain Adversarial Training (DAT) [2] to solve the domain mismatch problem in speaker recognition.

Project the source domain data and target domain data into the common domain.

Learn the domain-invariant and speaker-discriminative speech representations.

- **Domain Adversarial Training (DAT)**

![Diagram of DAT in Speaker Recognition](image)
Method

- Gradient Reversal Layer (GRL)
 - ensures the feature distributions over the two domains are similar so that we can get domain-invariant and speaker-discriminative features.
 - multiplies by a certain **negative** hyper parameter during the backpropagation, used to trade off two losses.

- Loss Function

\[
E(\Theta_f, \Theta_y, \Theta_d) = \sum_{i=1,...,N} L_y(G_y(G_f(x_i; \Theta_f); \Theta_y), y_i) - \lambda \sum_{i=1,...,N} L_d(G_d(G_f(x_i; \Theta_f); \Theta_d), d_i)
\]

\[
= \sum_{i=1,...,N} L^i_y(\Theta_f, \Theta_y) - \lambda \sum_{i=1,...,N} L^i_d(\Theta_f, \Theta_d)
\]
Method

- Domain Adversarial Neural Network (DANN): we call the model trained by DAT method as DANN
 - Input: enroll data i-vector (i_e) and test i-vector (i_t)
 - Extract new vectors \hat{i}_e, \hat{i}_t from the hidden layer of the feature extractor sub-network from DANN
 - Domain-invariant and speaker-discriminative speech representations
Experimental Setup and Result

- **Dataset:**
 - 2013 domain adaptation challenge dataset (DAC 13) i-vector Dataset
 - Source domain data: SWB
 - Target domain data: SRE, SRE-1phn
 - Test data: SRE10 telephone data

<table>
<thead>
<tr>
<th></th>
<th>SWB</th>
<th>SRE</th>
<th>SRE-1phn</th>
</tr>
</thead>
<tbody>
<tr>
<td>#spks</td>
<td>3114</td>
<td>3790</td>
<td>3787</td>
</tr>
<tr>
<td>#calls</td>
<td>33039</td>
<td>36470</td>
<td>25640</td>
</tr>
<tr>
<td>#calls/spkrs</td>
<td>10.6</td>
<td>9.6</td>
<td>6.77</td>
</tr>
<tr>
<td>#phone_num/spkr</td>
<td>3.8</td>
<td>2.8</td>
<td>1.0</td>
</tr>
</tbody>
</table>

i-vector Statistic in DAC 13 i-vector Dataset
Experimental Setup and Result

- **Baseline Experiments:**
 - System1: domain match
 - System2: domain mismatch
 - System3: domain match & insufficient channel information
 - System4: domain mismatch

<table>
<thead>
<tr>
<th>System#</th>
<th>Pre-processing</th>
<th>PLDA</th>
<th>EER%</th>
<th>DCF10</th>
<th>DCF08</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SRE</td>
<td>SRE</td>
<td>2.33</td>
<td>0.402</td>
<td>0.235</td>
</tr>
<tr>
<td>2</td>
<td>SRE</td>
<td>SWB</td>
<td>5.65</td>
<td>0.632</td>
<td>0.427</td>
</tr>
<tr>
<td>3</td>
<td>SRE-1phn</td>
<td>SRE-1phn</td>
<td>9.35</td>
<td>0.724</td>
<td>0.520</td>
</tr>
<tr>
<td>4</td>
<td>SRE-1phn</td>
<td>SWB</td>
<td>5.66</td>
<td>0.633</td>
<td>0.427</td>
</tr>
</tbody>
</table>
Experimental Setup and Result

- DAT method Experiments:
 - Training data of DANN:
 - SWB i-vectors with speaker labels (used to train the whole network)
 - SRE-1phn i-vectors without speaker label (used to train the feature extractor and domain classifier)
 - Baseline systems:
 - System 4: PLDA → SWB (Source domain data)

<table>
<thead>
<tr>
<th>System#</th>
<th>Adaptation Methods</th>
<th>EER%</th>
<th>DCF10</th>
<th>DCF08</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-</td>
<td>5.66</td>
<td>0.633</td>
<td>0.427</td>
</tr>
<tr>
<td>5</td>
<td>DAT</td>
<td>3.73</td>
<td>0.541</td>
<td>0.335</td>
</tr>
</tbody>
</table>
Experimental Setup and Result

- DAT vs. state-of-the-art unsupervised domain adaptation methods

EER%

<table>
<thead>
<tr>
<th>Method</th>
<th>Interpolated</th>
<th>IDV</th>
<th>DICN</th>
<th>DAE</th>
<th>AEDA</th>
<th>DAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpolated</td>
<td>6.55</td>
<td>6.15</td>
<td>4.99</td>
<td>4.81</td>
<td>4.5</td>
<td>3.73</td>
</tr>
</tbody>
</table>

DCF10%

<table>
<thead>
<tr>
<th>Method</th>
<th>Interpolated</th>
<th>IDV</th>
<th>DICN</th>
<th>DAE</th>
<th>AEDA</th>
<th>DAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpolated</td>
<td>0.652</td>
<td>0.676</td>
<td>0.623</td>
<td>0.61</td>
<td>0.589</td>
<td>0.541</td>
</tr>
</tbody>
</table>

Interpolated

IDV: Inter-dataset variability compensation

DICN: Dataset-Invariant Covariance Normalization

DAE: Denoising Autoencoder

AEDA: Autoencoder based Domain Adaptation
Conclusions

- We have proposed to perform domain adversarial training for speaker recognition.
- DAT overcomes the domain mismatch problem by projecting the source domain and target domain data into the same subspace.
- By DAT approach, we can obtain domain-invariant and speaker-discriminative speech representations.
- In future work, we will explore the effectiveness of DAT on NIST SRE 16 database and compare the difference between DAT and the generative adversarial network.
Reference

Thank you!