An Efficient Active Set Algorithm for Covariance Based Joint Data and Activity Detection for Massive Random Access with Massive MIMO

Ziyue Wang⁴, Zhilin Chen¹, Ya-Feng Liu¹, Foad Soroushii¹, and Wei Yu²

¹School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
²Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada
³LSEC, ICMSEC, AMSS, Chinese Academy of Sciences, Beijing, China
Email: wangzyi20@mails.ucas.ac.cn, {zchen, fsohrabi, weiyu}@ece.utoronto.ca, yaliu@lsec.cc.ac.cn

Motivation
- The uncoordinated random access is a challenging task in massive machine-type communication (mMTC).
- A large number of sporadically active devices wish to send small data to the base-station (BS) in the uplink.
- The BS acquires the active devices and their data by detecting the transmitted presigned nonorthogonal signature sequences.
- Covariance based approach [1, 2, 3]: formulate the detection problem as a maximum likelihood estimation (MLE) problem.
- The state-of-the-art coordinate descent (CD) algorithm doesn’t take advantage of the sparsity of the true solution.

Main Contribution
- Perform the covariance based approach for joint data and activity detection.
- Propose a computationally efficient active set algorithm with convergence guarantee.

System Model
- Single cell with one BS equipped with M antennas.
- N single-antenna devices, K of which are active at a time.
- Each active device wishes to transmit J bits of data to the BS.
- Each device n has a unique signature sequence set \(S_n = \{s_{n,k} \} \), where \(s_{n,k} \in \mathbb{C}^{Q \times 1}, 1 \leq k \leq Q \leq 2^L \), and \(L \) is the signature sequence length.
- Channel \(\sqrt{P_h} h_{n,k} \) of user n includes both large-scale fading component \(g_k \) and small-scale fading component \(h_{n,k} \) following the i.i.d. complex Gaussian distribution.
- Whether or not \(s_{n,k} \) is transmitted is indicated as \(\gamma_{n,k} \in \{0,1\} \), which satisfies \(\sum_k \gamma_{n,k} = 1 \) and \(\sum_k s_{n,k} \) indicates that device n is active.
- Define \(S = \{S_1, S_2, ..., S_N\} \) and \(\Gamma = \{\gamma_{1,1}, \gamma_{1,2}, ..., \gamma_{N,K}\} \).

Problem Formulation and Analysis
- Let \(f(\gamma) \) denote the objective function of problem (3). The gradient of \(f(\gamma) \) with respect to \(\gamma_{n,k} \) is
 \[
 \nabla f(\gamma)|_{\gamma_{n,k}} = \nabla \log |\Gamma| - s_{n,k}^H S \Gamma S_{n,k} \nabla \log |\Gamma| - s_{n,k}^H S \Gamma S_{n,k} \nabla \log |\Gamma| - s_{n,k}^H S \Gamma S_{n,k}
 \]
 The first-order (necessary) optimality condition of problem (3) is
 \[
 \nabla f(\gamma)|_{\gamma_{n,k}} \geq 0 \quad \text{if} \quad \gamma_{n,k} = 0, \quad \forall n \neq n_i \quad \text{and} \quad \gamma_{n_i} = 0, \quad \forall n_i \neq n_k.
 \]

Active Set Algorithm
- To fully exploit the sparsity of the true solution of (3), the active set should:
 - contain the indices of active sequences;
 - have the smallest possible cardinality.
- At the k-th iteration, the proposed selection strategy of the active set \(A^k \) is
 \[
 A^k = \left\{ (n,q) : \gamma_{n,q} > \varepsilon \text{ or } |\mathbf{V}(\gamma^{k-1})| - s_{n,q}^H S \Gamma S_{n,q} |\mathbf{V}(\gamma^{k-1})| - s_{n,q}^H S \Gamma S_{n,q} |\mathbf{V}(\gamma^{k-1})| - s_{n,q}^H S \Gamma S_{n,q} \right\},
 \]
 where \(\varepsilon > 0 \) and \(\mathbf{V}(\gamma^{k-1}) \) is the subvector of \(\gamma^{k-1} \) indexed by \(A^k \).

System Model (Cont.)
- The received signal \(Y \in \mathbb{C}^{M \times J} \) at the BS can be expressed as
 \[
 Y = \sum_{n=1}^{N} \sum_{k=1}^{Q} s_{n,k} \gamma_{n,k} \mathbf{x}_n \mathbf{h}_{n,k}^H + W
 \]
 where \(W \in \mathbb{C}^{M \times J} \) is the effective i.i.d. Gaussian noise with variance \(\sigma^2_W \).
- For given \(\gamma \) (diagonal entries of \(\Gamma \)), the m-th column of \(Y \) can be seen as independent samples from a complex Gaussian distribution as
 \[
 y_m \sim \mathcal{CN}(0, \sigma^2_W + \sigma^2_I),
 \]
 where \(\Lambda \) is a block diagonal matrix with each block being the all-one matrix \(E \in \mathbb{R}^{n \times n} \), and \(I \) is an identity matrix.
- Since there is at most one non-zero entry in each diagonal block \(D_n \in \mathbb{R}^{n \times n} \), the covariance matrix \(\Sigma = YY^H/M \) is computed by averaging over different antennas.
- The constraint \(\gamma \geq 0 \) is due to the fact that \(\gamma_{n,k} = (g_k h_{n,k})^2 \geq 0 \) for all n and q.

Algorithm 1: Proposed active set PG algorithm for solving problem (3)

1. Initialization: Create an empty set \(A^0 \), \(\gamma^0 \), \(\varepsilon^0 > 0 \) and \(\gamma^0 \); \(\Delta > 0 \).
2. Select the active set \(A^k \) according to (5).
3. Apply the spectral PG algorithm \((4) \) to solve the subproblem (6) until (7) is satisfied.
4. Set \(k = k + 1 \), and go to step 2.
5. Output: \(\gamma^k \).