AASIST: AUDIO ANTI-SPOOFING USING INTEGRATED SPECTRO-TEMPORAL GRAPH ATTENTION NETWORKS

Jee-weon Jung¹, Hee-Soo Heo¹, Hemlata Tak², Hye-jin Shim³, Joon Son Chung⁴, bong-Jin Lee¹, Ha-Jin Yu³, Nicholas Evans²

¹Naver Corporation, South Korea, ²EURECOM, Sophia Antipolis, France
³School of Computer Science, University of Seoul, ⁴Korea Advanced Institute of Science and Technology, South Korea

Overview
- Objective: Develop an efficient, single system that can detect a broad range of different spoofing attacks spanning in both spectral and temporal domains
- Proposed model: AASIST
 - Builds upon previous state-of-the-art system that extracts two (spectral and temporal) views (graphs) from raw waveform
 - Models heterogeneous graph using proposed mechanism concurrently
 - EER 0.83% / min t-DCF 0.0275 on the ASVspoof2019 LA dataset
 - Includes 19 different voice conversion and text-to-speech attacks
- Code available in https://github.com/clovaai/aasist

EER: equal error rate; DCF: detection cost function; LA: logical access; HS-GAL: heterogeneous stacking graph attention layer; MGO: max graph operation

Proposed architecture & techniques
- Spooing artefacts can lie in specific sub-bands or frames
 - Depends on the attack algorithm
- Strategy: extract spectral & temporal representations → combine

Architecture
- RawNet2-encoder: extracts 3-dimensional feature map from raw waveforms
 - (channel, spectral bins, temporal frames)
- Element-wise maximum on either spectral or temporal dimension → Two graph representations
 - Graph module: graph attention layer + graph pooling layer
 - Graph combination: add edges to all possible node pairs
 - HS-GAL jointly models two heterogeneous graphs
 - Heterogeneous attention: utilise different parameters for attention
 - Stack node: receives information from all other nodes
 - MGO exploits two same branches
 - Different parameters, each branch includes two HS-GALs
 - Readout: concatenate node-wise maximum, average, and stack node

Experiment results
- Metrics (lower is better)
 - EER(%)
 - min t-DCF
- Two model sizes
 - AASIST: 297k
 - AASIST-L: 85k
- AASIST and AASIST-L show state-of-the-art performance

Recent systems comparison

Dataset & Configurations
- Dataset: ASVspoof2019 LA
 - # bona fide utterance
 - # spoofed utterance
 - Train 2,580 22,800
 - Development 2,548 22,296
 - Evaluation 7,355 63,882

- Input: raw waveform (4 seconds)
- RawNet2-encoder: 6 residual blocks
- Graph pooling: reduce 50% nodes
- Optimiser: Adam w/ learning rate of 0.0001