SHORT PACKET STRUCTURE FOR ULTRA-RELIABLE MACHINE-TYPE COMMUNICATION: TRADEOFF BETWEEN DETECTION AND DECODING

ALEXANDRU-SABIN BANA, KASPER FLØE TRILLINGSGAARD, PETAR POPOVSKI, ELISABETH DE CARVALHO

The research and travel has been founded by the European Research Council (ERC Consolidator Grant no. 648382 WILLOW) within the Horizon 2020 Program and by the DFF (CELEST project).
Overview

• Machine-type Communications
• Short packet implications
• System model
• Packet structure
• Analysis
• Results and conclusion
Machine-type Communications

eMBB

5G

mMTC

uRLLC
Machine-type Communications

- eMBB
- 5G
- mMTC
- uRLLC

short packets
Machine-type Communications

- eMBB
- mMTC
- uRLLC

- High reliability: >99.999% during 1 ms
- Low latency: Physical layer latency <0.5 ms
- Co-existence

Short packet implications

- Coding limitations in finite blocklength regime
- Non-negligible control information overhead
- Considerable cost of packet detection

System model

Packet

TX
System model
System model
System model
System model

System model

• Point to point
• Data and ACK exchange with deadline
• One-shot (no retransmission opportunity)
• Unknown packet arrival time τ
• Constant channel and known by TX & RX
Packet structure

- Zadoff-Chu detection sequences
 \[R_{Y,\tau-k} = \Re \left[\sum_{j=0}^{N_t-1} p_j^* Y_{j+\tau-k} \right] > \Delta \]
- Small \(N \) -> finite blocklength regime
- Spherical Gaussian codebook
System model (ctd.)

- Ideal (N)ACK reception and fixed structure
- Sequential receiver operation

\[P_e = 1 - (1 - \epsilon_d)(1 - \epsilon_D) \]
System model (ctd.)

- Ideal (N)ACK reception and fixed structure
- Sequential receiver operation

\[P_e = 1 - (1 - \epsilon_d)(1 - \epsilon_D) \]

Detection errors:
- False alarm
- Misdetection

Decoding error

Diagram showing packet transmission, ACK/NACK reception, and recovery time.
Analysis

• PER upper bound

\[P_e \leq \Pr[\varepsilon_{FA}] + \Pr[\varepsilon_{MD}] + \Pr[\varepsilon_D] \]
Analysis

- PER upper bound

\[P_e \leq \Pr[\varepsilon_{FA}] + \Pr[\varepsilon_{MD}] + \Pr[\varepsilon_D] \]

- False alarm

\[\mathcal{R}_{Y,\tau-k} > \Delta, \forall k \in \{1, ..., t_r - 1\} \]

Diagram:
- Detection window
- Detection sequence
- AWGN
- \(\tau \)
- \(\tau - (t_r - 1) \)
Analysis

- **PER upper bound**

\[P_e \leq \Pr[\varepsilon_{FA}] + \Pr[\varepsilon_{MD}] + \Pr[\varepsilon_{D}] \]

- **False alarm**

\[R_{Y,\tau-k} > \Delta, \forall k \in \{1, \ldots, t_r - 1\} \]
Analysis

• PER upper bound

\[P_e \leq \Pr[\varepsilon_{FA}] + \Pr[\varepsilon_{MD}] + \Pr[\varepsilon_D] \]

• False alarm

\[R_{Y,\tau-k} > \Delta, \forall k \in \{1, \ldots, t_r - 1\} \]

• Misdetection

\[R_{Y,\tau} \leq \Delta \]
Analysis

• PER upper bound

\[P_e \leq \Pr[\varepsilon_{\text{FA}}] + \Pr[\varepsilon_{\text{MD}}] + \Pr[\varepsilon_{\text{D}}] \]

• False alarm

\[\mathcal{R}_{Y,\tau-k} > \Delta, \forall k \in \{1, \ldots, t_r - 1\} \]

• Misdetection

\[\mathcal{R}_{Y,\tau} \leq \Delta \]

• Decoding error

\[\epsilon_D(N_c, P) = Q\left(\frac{2N_cC(P) - b + \frac{1}{2}\log_2 2N_c}{\sqrt{2N_cV(P)}}\right) \] [2, 4]

Time-multiplexed preamble

- A false alarm can occur at any \(k \in S_{FA} = \{1, \ldots, t_r - 1\} \).

\[
\Pr[\mathcal{R}_{Y,T-k} > \Delta] = \Phi\left(\frac{\Delta - \mu_{R_{FA}}(k)}{\sigma_{\mathcal{R}_{Y,FA}}(k)}\right)
\]
Time-multiplexed preamble

- A false alarm can occur at any $k \in S_{FA} = \{1, ..., t_r - 1\}$.

\[
\Pr[\mathcal{R}_{Y,\tau-k} > \Delta] = Q \left(\frac{\Delta - \mu_{\mathcal{R}_{Y,FA}}(k)}{\sigma_{\mathcal{R}_{Y,FA}}} \right)
\]

\[
\Pr[\varepsilon_{FA}] = \Pr \left[\bigcup_{k \in S_{FA}} \{\mathcal{R}_{Y,\tau-k} > \Delta\} \right] \leq \sum_{k=1}^{t_r-1} Q \left(\frac{\Delta - \mu_{\mathcal{R}_{Y,FA}}(k)}{\sigma_{\mathcal{R}_{Y,FA}}} \right).
\]
Time-multiplexed preamble

- A false alarm can occur at any \(k \in S_{FA} = \{1, \ldots, t_r - 1\} \).

\[
\Pr[\mathcal{R}_{Y,\tau-k} > \Delta] = Q\left(\frac{\Delta - \mu_{\mathcal{R}_{Y,FA}}(k)}{\sigma_{\mathcal{R}_{Y,FA}}}\right)
\]

\[
\Pr[\varepsilon_{FA}] = \Pr\left[\bigcup_{k \in S_{FA}} \{\mathcal{R}_{Y,\tau-k} > \Delta\}\right] \leq \sum_{k=1}^{t_r-1} Q\left(\frac{\Delta - \mu_{\mathcal{R}_{Y,FA}}(k)}{\sigma_{\mathcal{R}_{Y,FA}}}\right).
\]

- The probability of misdetection

\[
\Pr[\varepsilon_{MD}] = Q\left(\frac{\mu_{\mathcal{R}_{Y,\tau}} - \Delta}{\sigma_{\mathcal{R}_{Y,\tau}}}\right)
\]
Superimposed sequence

1. Noise inflicted false alarms when $k \in S_{FA1} = \{N, \ldots, t_r - 1\}$

\[
Pr[\varepsilon_{FA1}] \leq (t_r - N)Q\left(\frac{\Delta}{\sigma_{Y,FA1}}\right), \text{ where } \sigma_{R,Y,FA1}^2 = \frac{N}{2}.
\]
Superimposed sequence

1. Noise inflicted false alarms when \(k \in S_{FA1} = \{N, ..., t_r - 1\} \)

\[
\Pr[\varepsilon_{FA1}] \leq (t_r - N)Q\left(\frac{\Delta}{\sigma_{R_{Y,FA1}}}\right), \text{ where } \sigma_{R_{Y,FA1}}^2 = \frac{N}{2}.
\]

2. Partial correlation inflicted false alarms when \(k \in S_{FA2} = \{1, ..., N - 1\} \)

\[
\Pr[\varepsilon_{FA2}] = \Pr\left[\bigcup_{k \in S_{FA2}} \{R_{Y,\tau-k} > \Delta\}\right] \approx \sum_{k=1}^{N-1} Q\left(\frac{\Delta - \mu_{R_{Y,FA2}}(k)}{\sigma_{R_{Y,FA2}}(k)}\right).
\]

\(\tau - (t_r - 1) \)

\(\tau \)

\(\tau - (N - 1) \)
Superimposed sequence

1. Noise inflicted false alarms when $k \in S_{FA1} = \{N, \ldots, t_r - 1\}$

 $$\Pr[\varepsilon_{FA1}] \leq (t_r - N)Q\left(\frac{\Delta}{\sigma_{R_{Y,FA1}}}\right), \text{ where } \sigma_{R_{Y,FA1}}^2 = \frac{N}{2}.$$

2. Partial correlation inflicted false alarms when $k \in S_{FA2} = \{1, \ldots, N - 1\}$

 $$\Pr[\varepsilon_{FA2}] = \Pr\left[\bigcup_{k \in S_{FA2}} \{R_{Y,\tau-k} > \Delta\}\right] \approx \sum_{k=1}^{N-1} Q\left(\frac{\Delta - \mu_{R_{Y,FA2}}(k)}{\sigma_{R_{Y,FA2}}(k)}\right).$$
Superimposed sequence

1. Noise inflicted false alarms when $k \in S_{FA1} = \{N, \ldots, t_r - 1\}$

$$\Pr[\varepsilon_{FA1}] \leq (t_r - N)Q\left(\frac{\Delta}{\sigma_{R_Y,FA1}}\right), \text{ where } \sigma_{R_Y,FA1}^2 = \frac{N}{2}.$$

2. Partial correlation inflicted false alarms when $k \in S_{FA2} = \{1, \ldots, N - 1\}$

$$\Pr[\varepsilon_{FA2}] = \Pr\left[\bigcup_{k \in S_{FA2}} \{R_{Y,\tau-k} > \Delta\} \right] \approx \sum_{k=1}^{N-1} Q\left(\frac{\Delta - \mu_{R_Y,FA2}(k)}{\sigma_{R_Y,FA2}(k)}\right).$$

and $\sigma_{R_Y,FA2}^2(k) = \frac{N}{2} + \frac{N-k}{2} (1 - \alpha)P$
Superimposed sequence

1. Noise inflicted false alarms when $k \in S_{FA1} = \{N, \ldots, t_r - 1\}$

$$\Pr[\varepsilon_{FA1}] \leq (t_r - N)Q\left(\frac{\Delta}{\sigma_{R,Y,FA1}}\right), \text{ where } \sigma_{R,Y,FA1}^2 = \frac{N}{2}.$$

2. Partial correlation inflicted false alarms when $k \in S_{FA2} = \{1, \ldots, N - 1\}$

$$\Pr[\varepsilon_{FA2}] = \Pr\left[\bigcup_{k \in S_{FA2}} \{R_{Y,\tau-k} > \Delta\} \right] \approx \sum_{k=1}^{N-1} Q\left(\frac{\Delta - \mu_{R,Y,FA2}(k)}{\sigma_{R,Y,FA2}(k)}\right).$$

and $\sigma_{R,Y,FA2}^2(k) = \frac{N}{2} + \frac{N-k}{2} (1 - \alpha)P$.

$\tau - (t_r - 1)$

$\tau - (N - 1)$

$\tau - 1$

τ

τ

τ

τ
Superimposed sequence

1. Noise inflicted false alarms when \(k \in S_{FA1} = \{N, ..., t_r - 1\} \)

\[
\Pr[\varepsilon_{FA1}] \leq (t_r - N) Q \left(\frac{\Delta}{\sigma_{R_Y,FA1}} \right), \text{ where } \sigma^2_{R_Y,FA1} = \frac{N}{2}.
\]

2. Partial correlation inflicted false alarms when \(k \in S_{FA2} = \{1, ..., N - 1\} \)

\[
\Pr[\varepsilon_{FA2}] = \Pr \left[\bigcup_{k \in S_{FA2}} \{R_{Y,\tau-k} > \Delta\} \right] \approx \sum_{k=1}^{N-1} Q \left(\frac{\Delta - \mu_{R_Y,FA2}(k)}{\sigma_{R_Y,FA2}(k)} \right).
\]

and \(\sigma^2_{R_Y,FA2}(k) = \frac{N}{2} + \frac{N-k}{2} (1 - \alpha) P \)

3. Misdetection probability

\[
\Pr[\varepsilon_{MD}] \approx Q \left(\frac{\mu_{R_Y,\tau} - \Delta}{\sigma_{R_Y,\tau}} \right)
\]
Packet structure optimization

- Formulate the problem as a minimization of the upper bounds on the PER

\[P_e \leq \Pr[\varepsilon_{FA}] + \Pr[\varepsilon_{MD}] + \Pr[\varepsilon_{D}] \]
Packet structure optimization

- Formulate the problem as a minimization of the upper bounds on the PER

\[P_e \leq Pr[\varepsilon_{FA}] + Pr[\varepsilon_{MD}] + Pr[\varepsilon_D] \]

Preamble case:

\[\min_{N_p \in \{1, \ldots, N-1\}} \min_{\Delta \geq 0} P_e^{pre}(\Delta, N_p, N, P) \]
Packet structure optimization

- Formulate the problem as a minimization of the upper bounds on the PER

\[P_e \leq \Pr[\varepsilon_{FA}] + \Pr[\varepsilon_{MD}] + \Pr[\varepsilon_D] \]

Preamble case:

\[\min_{N_p \in \{1, \ldots, N-1\}} \Delta \geq 0 \quad P_{e\text{pre}}^N (\Delta, N_p, N, P) \]

Superimposed case:

\[\min_{\alpha \in (0,1)} \Delta \geq 0 \quad P_{e\text{SI}}^N (\Delta, \alpha, N, P) \]
Numerical results

\[b = 128, \quad N = 257, \quad t_r = 1.1N \]
Optimal vs. pragmatic approach

- Optimal SI
- Optimal preamble
- Pragmatic preamble

\[b = 128, R_{\text{eff}} = \frac{b}{N}, t_r = 1.1N \]
Conclusion and further work

- Showcase the importance of considering overhead when transmitting short packets
- Compared two packet structures
- Provided an upper bound and an approximation for evaluating short packet error probability
- Include ACK error probability and ACK structure
- Improve detection metric to take into account the received signal energy