1. Crosstalk Canceller (CC) over a WASN

WASN: Wireless Acoustic Sensor Network

ORIGINAL SOUNDS
- \(s_1(n) \): (e.g. Male speech)
- \(s_2(n) \): (e.g. Female speech)

CC DESIRED RESPONSE
- \(x_1(n) \approx s_1(n) \)
- \(x_2(n) \approx s_2(n) \)

Step 1) > Estimate the electro-acoustic channels (also called Room Impulse Responses, RIR) \(c_{ij} \) using maximum length sequences (MLS) [1].

\[c_{ij} = [c_{ij}(0), c_{ij}(1), \ldots, c_{ij}(L_c - 1)]^T \]

Step 2) > Design the CC filters \(h_i \) [2].

Step 3) > Filter original signals \(s_1(n) \) and \(s_2(n) \) through filters \(h_i \) to obtain \(v_1(n) \) and \(v_2(n) \). Provide the desired signals \(x_1(n) \) and \(x_2(n) \) at the mic locations.

2. Adaptiv identification of the acoustic channels

Let us define the Global Impulse Response (GIR) \(a_{ij} \) of NODE #1 as the impulse response between \(s_j(n) \) and \(x_i(n) \):

\[a_{ij} = c_{ij} \ast h_{11} + c_{ij} \ast h_{21} \]

We define in the same way the GIR between \(s_j(n) \) and \(x_i(n) \) as:

\[a_{ij} = c_{ij} \ast h_{12} + c_{ij} \ast h_{22} \]

Therefore:

\[x_1(n) = a_{11} \ast s_1(n) + a_{12} \ast s_2(n) \]

Adaptive estimation of the GIRs

Step 1

> The estimation of the GIRs related to NODE #1 is carried out minimizing the mean square of the following error signals:

\[e_{11}(n) = |x_1(n) - \tilde{a}_{11} \ast s_1(n) - \tilde{a}_{12} \ast s_2(n)| \]

\[e_{12}(n) = |x_1(n) - \tilde{a}_{11} \ast s_1(n) - \tilde{a}_{12} \ast s_2(n)| \]

Similar procedure to estimate the GIRs associated to NODE #2 where:

\[a_{21} = c_{21} \ast h_{11} + c_{22} \ast h_{21} \]

\[a_{22} = c_{21} \ast h_{12} + c_{22} \ast h_{22} \]

Step 2

> Once the GIRs have been estimated, the corresponding RIRs are estimated at each node through a least squares (LS) solution.

Step 3

> Follow steps 2) and 3) of the CC algorithm to design the new filters and provide signals \(v_1(n) \) and \(v_2(n) \) to the loudspeakers.

3. Simulation Results

- Real acoustic channels measured between two Bluetooth loudspeakers & two tablets (Android OS).
- Number of RIR coefficients: \(L_c = 1200 \).
- Sampling frequency \(f_s = 11025 \text{ Hz} \).
- \(s_1(n) \) and \(s_2(n) \) are uncorrelated white noise.

Conclusions

- GIR Estimation: MIPAPA of order \(N \) outperforms the corresponding APA of the same order.
- RIR Estimation: The MSE of MIPAPA of order \(N-1 \) is similar to that of APA of order \(N \).

References