Occupancy pattern recognition with infrared array sensors: A Bayesian approach to multi-body tracking

Stefano Savazzi, Vittorio Rampa, Sanaz Kianoush, Alberto Minora, Leonardo Costa

Problem: tracking of body-induced thermal signatures

Thermal vision systems based on low-cost IR array sensors are becoming attractive in many smart living scenarios.

Thermal vision and related computing tools enable the possibility of analyzing body configurations, activities and motion patterns, without the being limited by privacy issues since no specific person can be recognized through the analysis of thermal frames.

This paper proposes a Bayesian framework for recognition and discrimination of body motions based on real-time analysis of thermal signatures.

We propose to use of low-resolution IR array sensors for occupancy estimation. Such thermal sensors are typically ceiling-mounted (see picture on the right). In particular, we address the problem of tracking the location of an arbitrary number of individuals (i.e., targets) that can freely move inside the monitored area.

The proposed toolkit learns a statistical model for the extraction of body-induced thermal signatures from noisy data; then it applies a mobility model for tracking multi-body motions in the area.

Bayesian model learning

We consider a frame y_t of M received noisy temperature readings from the corresponding thermopile elements of the array.

For occupancy pattern estimation, we divide the monitored area into a grid of $K \leq M$ regions of interest.

We tackle the problem of estimating the occupancy in each region $r_k = [r_{k,1}, \ldots, r_{k,K}]^T$, $r_{k,k} \in [0,1]$ by linear model

$$y_t = \mathbf{H} \cdot \mathbf{r}_t + \mathbf{w}_t$$

Elements of matrix \mathbf{H} are sparse, we thus use a Laplace prior distribution (Lasso-type regularization)

$$\mathbf{H}_{i,k} = \text{argmax}_{\mathbf{H}} \sum_{k=1}^{K} \log \Pr(y_t | \mathbf{r}_t^{(i)}, \mathbf{H}).$$

$$\begin{align*}
\mathbf{H} &\equiv \text{argmax}_{\mathbf{H}} \sum_{k=1}^{K} \log \Pr(y_t | \mathbf{r}_t^{(i)}, \mathbf{H}) + \\
&+ \lambda \sum_{k=1}^{K} \log \Pr(h_{k,2}) \Pr(h_{k,1} | h_{k,2}) \Pr(h_{k,1}) \Pr(h_{k,0} | h_{k,1}).
\end{align*}$$

Bayesian filtering (tracking)

Model simplification is applied to suppress irrelevant (or small) thermal signature, to provide an estimate less sensitive to training impairments

$$h_{t+1} = \mathbf{H}_{t+1} h_{t}$$

Tracking of body occupancy is based on a-posteriori probability

$$
\Pr(r_{k,t+1} | Y_{t+1}) = \int \Pr(r_{k,t+1} | r_{k,t}, Y_{t+1}) \Pr(r_{k,t} | Y_{t+1})
$$

and we apply iterative Bayesian filtering

$$
\Pr(r_{k,t+1} | Y_{t+1}) \equiv \Pr \left[Y_{t+1}^{(k)} | y_{t+1}^{(k)} \right]
$$

with a-priori probability updated iteratively

$$
\Pr(r_{k,t+1} | Y_{t+1}) = \Pr(r_{k,t} | Y_{t+1}) \Pr(\epsilon_{t+1} | r_{k,t} | Y_{t+1})
$$

Transition probability (from 2D Gaussian random walk motion model)

Experimental validation: occupancy pattern recognition

The use of a motion model as well as the processing of backlogs of thermal images prevent typical detection problems related with the temporal disappearance of the human body that are often experienced in practical ceiling mounting arrangements.

The Bayesian method is also integrated with an adaptive background subtraction method to filter out noisy thermal sources that are not induced by body movements

$$
\mu_{k}^{(i)} = \alpha \mu_{k}^{(i-1)} + (1 - \alpha) v_{k,t}^{(i)} \\
C_{k}^{(i)} = \beta C_{k}^{(i-1)} + (1 - \beta) \sum_{m=1}^{M} v_{k,m}^{(i)} v_{l,m}^{(i)}
$$

$$
\sigma_{k}^{(i)} = \sqrt{C_{k}^{(i)}}
$$

The area is divided into $k=12$ areas.

A fixed thermal source (a small radiator) is deployed in region $k=8$ to generate a localized and time-varying heat signature. 1-5 subjects are moving by following a repeated pattern.

After a transient of 45 sec. the system is able to learn the new background and track the targets. Body tracking has accuracy of 97%