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INTRODUCTION
• Community detection from graphs has many applications in analyz-

ing collaboration networks, protein interaction, and social networks.
• Community : dense internal and sparse external connections
• Earlier approaches : hierarchical clustering, modularity optimization,

spectral clustering, clique percolation etc.

- Heuristic objective functions
- Greedy optimization techniques

• Principled approach : statistical modelling of community structures
• Scalable Bayesian inference using Stochastic Gradient MCMC

(SG-MCMC) schemes

We propose a version of a degree corrected stochastic block
model and present an MCMC based inference algorithm.

BACKGROUND
In a stochastic block model, the probability of a link between any
two nodes depends on their community memberships.

N : no. nodes, K : no. communities
Stochastic Blockmodel

• ci ∈ {1, 2, ...,K} : membership
of node i

• yab ∈ {0, 1} : (a, b)’th entry of
the adjacency matrix

• βk` ∈ (0, 1) : link probability be-
tween two nodes in community
k and `

• p(yab = 1|ca = k, cb = `) = βk` A graph with two communities

Overlapping communities [1]
πak : probability that node a belongs to community k,

∑K
k=1 πak = 1

Mixed Membership Stochastic Blockmodel (MMSB)

step 1 : sample zab ∼ πa and zba ∼ πb
step 2 : sample yab|(zab = k, zba = `) ∼ Bernoulli(βk`)

• assortative MMSB (a-MMSB) [2] : βk` = δ for k 6= `

• State-of-the-art Bayesian inference of p(β,π|Y) is achieved [2]
using Stochastic Gradient Riemannian Langevin Dynamics
(SGRLD) algorithm.

Degree Corrected Blockmodel (DCB)

• Many networks show heavy
tailed degree distributions.

• Degree heterogeneity within
community is modelled by
considering the dependence
of link probability on incident
nodes. Non-uniformity of degree within communities

MIXED MEMBERSHIP DCB (MMDCB)
Parameters :
• Community membership distribution πa for each node a
• Degree correction parameter ra ∈ R for each node a
• Community specific parameters qk > 0 for each community k
Prior distributions :
πa ∼ Dir(α), ra ∼ N (0, σ2) and qk ∼ N (0, σ2)1{qk>0}

Generative model :

for any two nodes a and b :
sample zab ∼ πa and zba ∼ πb
if zab = zba = k :

sample yab ∼ Bernoulli(logit−1(qk + ra + rb))

else :
sample yab ∼ Bernoulli(logit−1(ra + rb))

Posterior distribution :
p(π,q, r|Y) ∝ p(π)p(q)p(r)p(Y|π,q, r) ,

=
N∏

a=1

p(πa)p(ra)
K∏

k=1

p(qk)∏
1≤a<b≤N

∑
zab,zba

p(yab, zab, zba|πa, πb, q1:K , ra, rb)

Inference :
• Analytically intractable⇒ approximation is required
• We design an MCMC scheme based on RLD to sample from the joint

posterior distribution.
• Computational complexity per sample : O(N2K) for any gradient

based MCMC algorithm, does not scale well to large graphs
• Stochastic Gradient RLD (SGRLD) [3] provides a trade-off be-

tween accuracy and complexity.

EXPERIMENTAL SETUP
• Evaluation on 4 academic collaboration networks

NETSCIENCE RELATIVITY HEP-TH HEP-PH

Nodes 1589 5242 9877 12008
Edges 2742 14996 25998 118521

• Node : researcher, edge : collaboration
• Held-out test set : 10% of the links, same number of non-links
• No. communities (K) : 25, 50, 75 and 100

• Comparison with the SGRLD algorithm on the a-MMSB [2].
• Predictive performance is measured by average perplexity
• High predictive likelihood for test set⇒ low average perplexity
• Performance metric for link prediction : area under the receiver

operating characeristic (ROC) curve (AUC)

RESULTS
Convergence of perplexity for the HEP-PH dataset with K = 50

0 1 2 3 4

time (sec) 10
4

4

5

6

7

8

9

P
e

rp
le

x
it

y

a-MMSB

MMDCB

The MMDCB achieves lower perplexity compared to the a-MMSB
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The MMDCB obtains higher AUC compared to the a-MMSB
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CONCLUSION
• MMDCB models the networks better than a-MMSB.
• SG-MCMC algorithms scale well to large networks.
• Future work : better graph models, advanced SG-MCMC schemes
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