SCALABLE MCMC IN DEGREE CORRECTED STOCHASTIC BLOCK MODEL SOUMYASUNDAR PAL, MARK COATES DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, MCGILL UNIVERSITY

INTRODUCTION

- **Community detection** from graphs has many applications in analyzing collaboration networks, protein interaction, and social networks.
- **Community** : dense internal and sparse external connections
- Earlier approaches : hierarchical clustering, modularity optimization, spectral clustering, clique percolation etc.
 - Heuristic objective functions
 - Greedy optimization techniques
- Principled approach : statistical modelling of community structures
- Scalable Bayesian inference using Stochastic Gradient MCMC (SG-MCMC) schemes

We propose a version of a degree corrected stochastic block model and present an MCMC based inference algorithm.

BACKGROUND

In a stochastic block model, the probability of a link between any two nodes depends on their community memberships.

N : no. nodes, K : no. communities **Stochastic Blockmodel**

- $c_i \in \{1, 2, ..., K\}$: membership of node *i*
- $y_{ab} \in \{0,1\}$: (a,b)'th entry of the adjacency matrix
- $\beta_{k\ell} \in (0,1)$: link probability between two nodes in community k and ℓ
- $p(y_{ab} = 1 | c_a = k, c_b = \ell) = \beta_{k\ell}$

Overlapping communities [1]

 π_{ak} : probability that node a belongs to community k, $\sum_{k=1}^{K} \pi_{ak} = 1$

Mixed Membership Stochastic Blockmodel (MMSB)

step 1 : sample $z_{ab} \sim \pi_a$ and $z_{ba} \sim \pi_b$ step 2 : sample $y_{ab}|(z_{ab} = k, z_{ba} = \ell) \sim Bernoulli(\beta_{k\ell})$

- assortative MMSB (a-MMSB) [2] : $\beta_{k\ell} = \delta$ for $k \neq \ell$
- State-of-the-art Bayesian inference of $p(\beta, \pi | \mathbf{Y})$ is achieved [2] using Stochastic Gradient Riemannian Langevin Dynamics (SGRLD) algorithm.

Degree Corrected Blockmodel (DCB)

- Many networks show heavy tailed degree distributions.
- Degree heterogeneity within **community** is modelled by considering the dependence of link probability on incident nodes.

ΤΥ	HEP-TH	HEP-PH
	9877	12008
	25998	118521

Computer Networks Research Laboratory

• Future work : better graph models, advanced SG-MCMC schemes

REFERENCES

Airoldi, Edoardo M. et al. 2008. Mixed membership stochastic blockmodels. In JMLR. [2] Li, Wenzhe et al. 2016. Scalable MCMC for mixed membership stochastic blockmodels. In Proc. AISTATS. [3] Welling, Max and Teh, Yee W. 2011. Bayesian learning via stochastic gradient Langevin dynamics. In Proc. ICML.