

Background

- The performance of speaker diarization suffers huge degradation in quite challenging realistic environments
- Previous researches have mostly focused on multi-channel speech preprocessing, few on single-channel scenes
- Deep learning techniques become mainstream methods in speech enhancement

What's Important in This Study

- Investigate on the effects of different speech enhancement methods as a preprocessor to speaker diarization
- Propose a novel LSTM-based architecture for speech enhancement
- Explore the generalization capability of the preprocessor in highly mismatched conditions

Baseline Diarization System

Information bottleneck framework:

Suppose we have the speech segment $X = \{x_1, x_2, ..., x_m\}$ to be clustered, and the set of relevance variables are $Y = \{y_1, y_2, ..., y_n\}$, the desired cluetering outputs are $C = \{c_1, c_2, ..., c_p\}$.

The optimization function is:

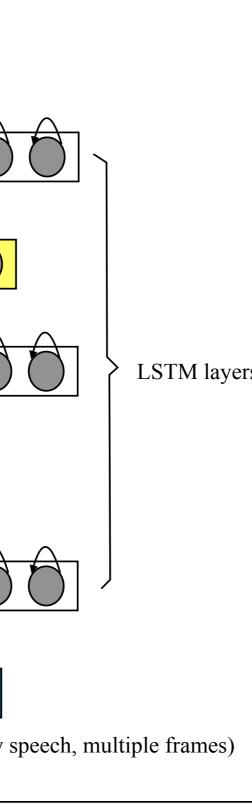
$$F = I(C, Y) - \frac{1}{\beta}I(C, X)$$

 $I(\cdot, \cdot)$ denotes the mutual information between two sets of random variables.

A NOVEL LSTM-BASED SPEECH PREPROCESSOR FOR SPEAKER DIARIZATION IN REALISTIC MISMATCH CONDITIONS Lei Sun¹, Jun Du¹, Tian Gao¹, Yu-Ding Lu², Yu Tsao², Chin-Hui Lee³, Neville Ryant⁴ ¹University of Science and Technology of China, Hefei, Anhui, China ²Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan TEGES ³Georgia Institute of Technology, Atlanta, Georgia, USA ⁴Linguistic Data Consortium, University of Pennsylvania, Philadelphia, PA, USA The Novel Architecture For Preprocessor Experiments **High mismatches between training and testing data:** $\left[\begin{array}{c} 6 & 6 & 6 & 6 \\ \hline 7 & 6 & 6 & 6 \\ \hline 7 & 6 & 6 & 6 \\ \hline 7 & 6 & 6 & 6 \\ \hline 7 & 6 & 6 & 6 \\ \hline 7 & 6 & 6 & 6 \\ \hline 7 & 7 & 7 \\ \hline 7 & 7 \\ \hline 7 & 7 & 7$ LSTM layers **Proposed architecture performs better than all other previous speech** enhancement methods in terms of DER on AMI's SDM data: 6666666666 LSTM-PL-MTI 34 Input (noisy speech, multiple frames) →:Data copy HE 29 The corresponding objective function is: $E = \sum_{k=1}^{K} \alpha_k E_k + E_{\text{IRM}}$ $E_k = \frac{1}{N} \sum_{n=1}^{N} \|\mathcal{F}_k(\hat{\mathbf{x}}_n^0, \hat{\mathbf{x}}_n^1, \dots, \hat{\mathbf{x}}_n^{k-1}, \mathbf{\Lambda}_k)$ For MDM data (after beamforming algorithm) in AMI:

$$E_{\text{IRM}} = \frac{1}{N} \sum_{n=1}^{N} \|\mathcal{F}_{\text{IRM}}(\hat{\mathbf{x}}_{n}^{0}, \hat{\mathbf{x}}_{n}^{1}, ..., \hat{\mathbf{x}}_{n}^{K-1}, \boldsymbol{\Lambda})\|$$

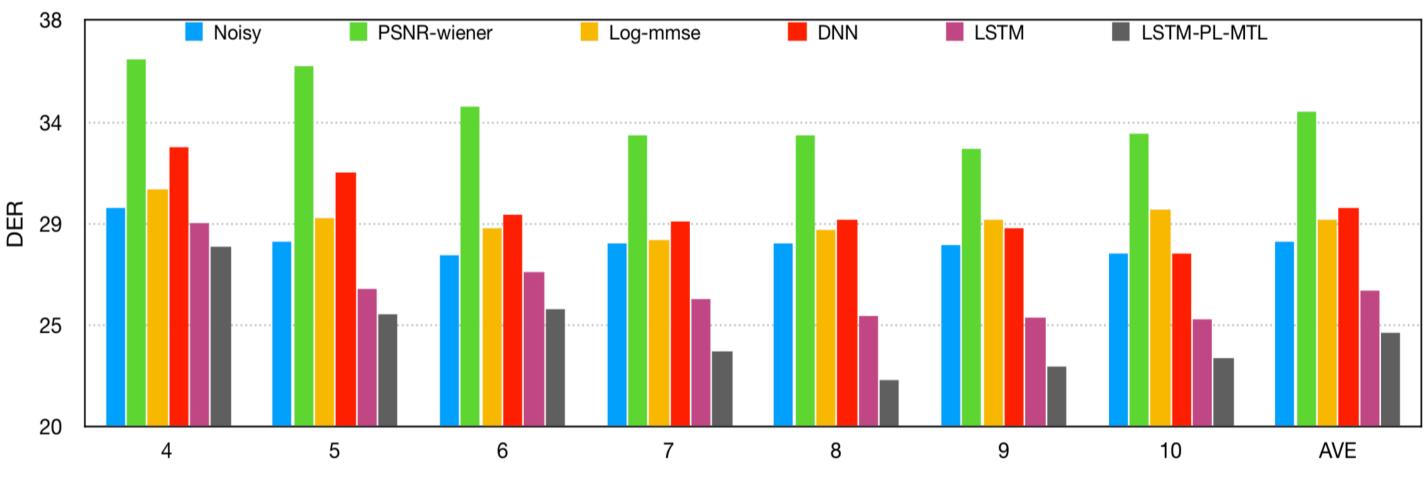
where $\hat{\mathbf{x}}_n^k$ and \mathbf{x}_n^k are the *n*th *D*-dimensional vectors of estimated and target LPS feature for *k*th target layer. $\mathcal{F}_k(\hat{\mathbf{x}}_n^0, \hat{\mathbf{x}}_n^1, ..., \hat{\mathbf{x}}_n^{k-1}, \mathbf{\Lambda}_k)$ is the layer function with the dense structure using the learned intermediate targets from $\hat{\mathbf{x}}_n^0$ to $\hat{\mathbf{x}}_n^{k-1}$, and Λ_k represents the parameter set before k^{th} target layer. E_k and E_{IRM} are MSE for multi-target learning in the final output layer.



$$)-\mathbf{x}_{n}^{k}\Vert_{2}^{2}$$

 $\mathbf{\Lambda}_{\mathrm{IRM}}) - \mathbf{x}_n^{\mathrm{IRM}} \|_2^2$

	Training	Testing		
Corpus	WSJ0	ADOS	SeedLings	AMI
Distance	Near	Far	Near	Far
Style	Reading	Conversation		
Interferences	Additive noise	Background noises, reverberations		
Interaction	Simulation	Unknown, real noisy speech		
Child?	None	Kids	6-month baby	None



Noisy	DNN	LSTM	LSTM-PL-MTL
25.9	26.4	22.5	21.6

For data which involves child's speech:

	Noisy	Log-mmse	PSNR-wiener	LSTM-PL-MTL
ADOS	36.3	40.0	36.0	29.2
SeedLings	45.3	47.0	46.7	39.2

