# **Guided Image Filtering with Arbitrary Window Function**

\*Norishige Fukushima<sup>+</sup> +Nagoya Institute of Technology, Japan

# Introduction

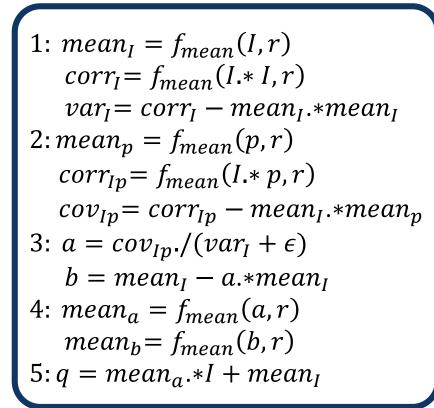
### Background

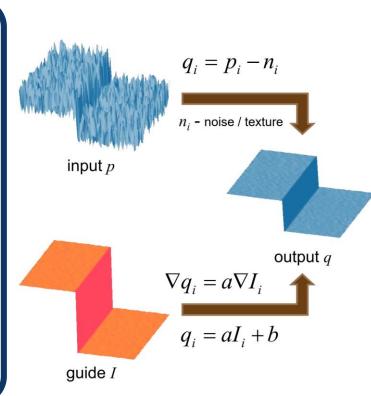
- Edge preserving filtering is essential tools for current image processing and computer vision.
  - denoising, detail enhancement, HDR, haze removing, stereo matching, optical flow, image coding.
- Guided image filtering (GIF) is a fast edge preserving filter. - constant time for filtering kernel radius
- limitation of guided image filtering is setting kernel shape

#### Contributions

- 1. Extending the definition of GIF for designing arbitrary kernel shape of filtering.
- 2. Keep constant time property of GIF.

#### Overview of guided image filter





- All computation consists of Hadamard product and simple box filtering  $(f_{mean})$ , which has constant time algorithm for filtering kernel radius.
- Computational time is not depend on filtering kernel.

# Guided Image Filtering

#### Conventional

Assumption: an output patch q is a linear transform of a patch of a guidance image I.

$$q_i' = a_k I_i + b_k, \forall i \in \omega_k$$

Coefficients a, b are introduced by linear regression between I and input image p.

$$\underset{a_k,b_k}{\operatorname{arg\,min}} = \sum_{i \in \omega_k} ((a_k I_i + b_k - p_i)^2 + \epsilon a_k^2)$$

Solving this:

$$a_k = \frac{\operatorname{cov}_k(I, p)}{\operatorname{var}_k(I) + \epsilon}$$
$$b_k = \bar{p}_k - a_k \bar{I}_k$$

Averaging each patch for output image.

$$q_i = \frac{1}{|\omega|} \sum_{k|i \in \omega_k} (a_k I_i + b_k)$$

$$= \bar{a}_i I_i + \bar{b}_i,$$

The per patch mean deforms averages of coefficients.





#### Kenjiro Sugimoto<sup>‡</sup>

#### Sei-ichiro Kamata<sup>‡</sup> \*fukushima@nitech.ac.jp

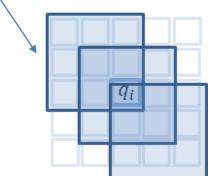
#### Arbitrary windowed

- Assumption: we use weighted linear regression of the whole image, instead of each local patch.
  - e.g., emphasize focusing a pixel.

 $a_k, b_k$ 

• patch operation is equal to a square window for

patch  $\omega_k$ 



 $a_k = \frac{\hat{\operatorname{cov}}_k(I, p)}{\hat{\operatorname{var}}_k(I) + \epsilon} \quad \hat{x_k} =$  $b_k = \hat{p_k} - a_k \hat{I_k}$ 

an image.

Solving this:

 $\overline{\sum_{i\in\Omega}w_{k,i}}$ where hat means weighted average.

arg min =  $\sum w_{i,k} ((a_k I_i + b_k - p_i)^2 + \epsilon a_k^2)$ 

 $\sum_{i\in\Omega} w_{k,i} x_i$ 

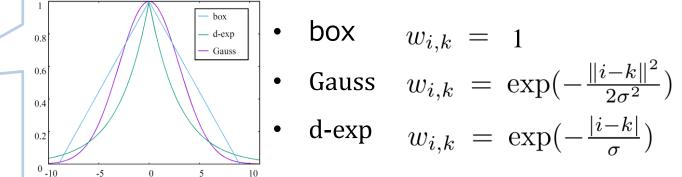
Finally, we average whole converted images. The equation also deforms weighted averages of

coefficients.  

$$q_i = \frac{\sum_{k \in \Omega} w_{i,k} (a_k I_i + b_k)}{\sum_{k \in \Omega} w_{i,k}}$$

$$= \hat{a_i}I_i + \hat{b_i}$$

- Weighted linear regression can be represented by arbitrary windowed image filtering.
- □ If the weighted mean is constant time filter, the extended GIF is also constant time. For example,
- IIR filter (Gaussian, dual exponential (d-exp)
- constant time FIR filter (box, Gaussian)
- constant time bilateral filter
- guided filter itself (recursive applying)

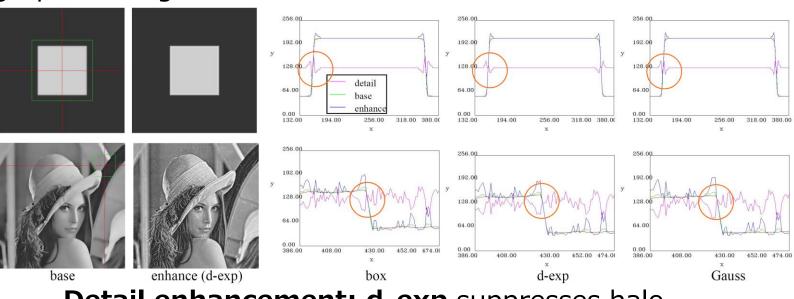


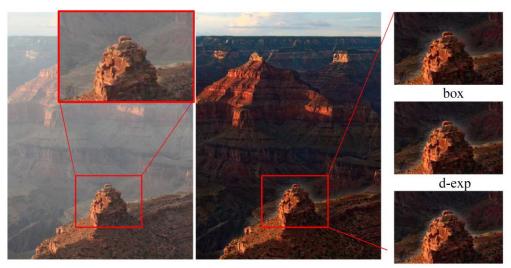
## Variation of filters and applications

- denoising
- haze removing

| noise $\sigma$ | box   | d-exp | Gauss |
|----------------|-------|-------|-------|
| 5              | 37.68 | 37.31 | 37.76 |
| 10             | 33.31 | 33.26 | 33.40 |
| 15             | 31.50 | 31.14 | 31.72 |

**Denoising** : Gaussian filtering is the best. If the assumption of local linearity is not supported (the case of bimodal histogram), edge-preserving filter is better.

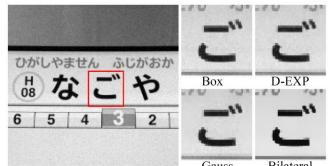




(c) d-exp

# **Experimental Results**

□ detail enhancement □ LTI filter: box, Gaussian, dual exponential smoothing LTV filter: bilateral filter



Detail enhancement: d-exp suppresses halo.

|           | box   | d-exp* | Gauss  |
|-----------|-------|--------|--------|
| 512x512   | 4.68  | 6.35   | 6.23   |
| 1024x1024 | 22.58 | 32.98  | 29.14  |
| 2048x2048 | 88.65 | 134.5  | 118.78 |

\*faster than paper version.

#### Haze remove: box filter is the best.

#### Computational time [ms]