Motivation

• The design of handcrafted neural networks for a task requires a lot of time and resources.

• Current neural architecture search techniques require domain knowledge to define the search space.

• The goal is to utilize the knowledge of previous (base) task to design a suitable search space for the incoming (target) task.
Approach

• Given a dictionary of previous task-data pairs.

• For any incoming target task-data pair, our goal is to find an architecture for achieving high performance on the target task.

• TA-NAS works as follows:
 1. **Task Similarity**: Given an incoming task-data set pair, TA-NAS finds the most related task-data set pairs in the dictionary.
 2. **Search Space**: TA-NAS defines a suitable search space for the target task-data set pair, based on the related pairs.
 3. **Search Algorithm**: TA-NAS searches to discover an optimal architecture in term of performance for the target task-data set pair on the search space.
Task Similarity

- We represent a task by a sufficiently trained neural network.
- Let $A = (T_A, X_A)$ and $B = (T_B, X_B)$ be two task-data set pairs, where N_A and N_B are two trained architectures that are ϵ-representative for A and B, respectively.
- We can define a dissimilarity measure between A and B as follows:

$$d_{A,B}^\epsilon = \min_{N_t \in S_t: \mathcal{L}_B(N_t \circ N_A) \geq 1 - \epsilon} O(N_t)$$

where S_t is a given transform network search space, and $O()$ is a general measure of complexity, and N_t is the network that take the last-layer hidden features of N_A and transform them into N_B's.
Task Similarity

Diagram:
- Task B & Dataset B
 - Trained CNN on Task A: not training
 - Transform Network T
 - Data
 - Pruning
 - Label
 - Training
 - Pruned Network T
 - $d_{A,B} = O(T)$
Search Space

- The search space is defined by the structures of cell and skeleton.
- A cell is a densely connected directed-acyclic graph of nodes, where all nodes are connected by operations.
- The skeleton is often predefined.
- Here, we construct the search space of the target task by combining the skeletons, cells, and operations from only the most similar pairs in the dictionary.
Fusion Search (FUSE)

- Fusion Search (FUSE) is a search algorithm that considers the network candidates as a whole and performs the optimization using gradient descent. For any set of C candidates, we relax the outputs by exponential weights:

$$\bar{c}(X) = \sum_{c \in C} \frac{\exp(\alpha_c)}{\sum_{c' \in C} \exp(\alpha_{c'})} c(X)$$

- The training procedure is based on alternative minimization and can be divided into:
 1. freeze α, train network’s weights: $\min_w \mathcal{L}(w; \alpha, \bar{c}, X_{\text{train}})$
 2. freeze network’s weights, update α: $\min_w \mathcal{L}(\alpha; w, \bar{c}, X_{\text{val}})$
Result

• For our experiment, we initialize with a set of base binary classification tasks consisting of finding specific digits in MNIST and specific objects in Fashion-MNIST.

• Let the target task be the binary classification task from Quick, Draw! data set. Tasks from the same data set are more similar than tasks from different data sets.
<table>
<thead>
<tr>
<th>Architecture</th>
<th>Error (%)</th>
<th>Param (M)</th>
<th>GPU days</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet-18</td>
<td>1.42</td>
<td>11.44</td>
<td>-</td>
</tr>
<tr>
<td>ResNet-34</td>
<td>1.2</td>
<td>21.54</td>
<td>-</td>
</tr>
<tr>
<td>DenseNet-161</td>
<td>1.17</td>
<td>27.6</td>
<td>-</td>
</tr>
<tr>
<td>Random Search</td>
<td>1.33</td>
<td>2.55</td>
<td>4</td>
</tr>
<tr>
<td>FUSE w. standard space</td>
<td>1.21</td>
<td>2.89</td>
<td>2</td>
</tr>
<tr>
<td>FUSE w. task-aware space</td>
<td>1.18</td>
<td>2.72</td>
<td>2</td>
</tr>
</tbody>
</table>
Conclusion

• We proposed TA-NAS to address the Neural Architecture Search problem.

• By introducing the task similarity, we can create a restricted search space and quickly evaluate candidates using the FUSE search algorithm.

• This search algorithm can be applied to find the best way to grow or to compress the current network.