Introduction

Problems:
- Real-world image/video capturing introduces low-frequency or grainy noise.
- High-frequency details of the image cannot be seen on a small display.
- Conventional noise reduction methods are designed to remove white or all-frequency noise.

Solution:
- We propose an approach for a coarse-grain removal using existing white noise filters.

Conventional Removal of Low Frequency Noise

Our Algorithm:
1. Anti-aliasing (Low-pass) filter: \(I_h = I * h_\sigma \)
2. Downscale and filter image using a white noise filter
 \[A'_h = I_h(0 : 2^r : e, 0 : 2^r : r) \]
 \[A'_w = WGF(A'_h, \sigma_w) \]
3. Upscale filtered image and compute the residual image
 \[z = I_h - U_l(A'_w) \]
4. Filter the decoupled residual image using DCT shrinkage
 \[\tilde{z} = FDC(I_h) \]
 \[\tilde{z}_a = \tilde{z}_a [1 - \exp(-p)], p = \max \left(\frac{|\tilde{z}_a|}{\sigma_w}, 1, 0 \right) \]
5. Inverse decouple
 \[I = z + \tilde{z}_a, \tilde{z}_a = IDC(\tilde{z}_a) \]

Decoupling makes the low-frequency noise less spatially correlated

System Architecture

Experimental results

Synthetic noise
\[I = I + n * h \]
- \(n \) Gaussian noise with \(\sigma_n = 15 \)
- \(h \) Gaussian filter with \(\sigma_{cov} = 0.6 \)

PSNR averaged over the TID2013 dataset degraded with LF noise, comparing proposed and related decomposition methods

<table>
<thead>
<tr>
<th>Filter</th>
<th>WGN</th>
<th>WSN</th>
<th>WSN</th>
<th>WSN</th>
<th>WSN</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM3D</td>
<td>31.94</td>
<td>31.87</td>
<td>31.90</td>
<td>32.02</td>
<td>31.87</td>
<td>32.97</td>
</tr>
<tr>
<td>PId</td>
<td>31.73</td>
<td>31.83</td>
<td>31.91</td>
<td>32.02</td>
<td>32.02</td>
<td>32.96</td>
</tr>
</tbody>
</table>

Real filtered and compressed noise

Synthetic low-frequency noise