Technische Universität BerlinErik Bochinski, Rolf Jongebloed, Michael Tok and Thomas SikoraRegularized Gradient Descent Training of SteeredMixture of Experts for Sparse Image Representation

Introduction

Fakultät

IV

The Steered Mixture-of-Experts (SMoE) framework targets a sparse space-continuous representation for images, videos, and light fields enabling processing tasks such as approximation, denoising, and coding. The underlying stochastic processes are represented by a Gaussian Mixture Model, traditionally trained by the Expectation-Maximization (EM) algorithm.

We instead propose to use the MSE of the regressed imagery for a Gradient Descent optimization as primary training objective. Further, we extend this approach with regularization terms to enforce desirable properties like the sparsity of the model or noise robustness of the training process. Experimental evaluations show that our approach outperforms the state-of-the-art consistently by 1.5 dB to 6.1 dB PSNR for image representation.

Original SMoE 34.63 dB JPEG 34.68 dB Image quality comparison between regressed SMoE model trained by the proposed method and JPEG at the same PSNR level.

Steered Mixtures of Experts

Gaussian Mixture Models are used to define a multivariate joint density distribution for (spatial input) random vector x and (luminance output) random variable y as sum of K weighted Gaussian distributions (kernels)

$$p(\mathbf{x}, y) = \sum_{i=1}^{K} \pi_i \cdot \mathcal{N}(\mathbf{x}, y; \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i) \qquad (1)$$

with mixing coefficients π_i , for which $\sum_{\forall i} \pi_i = 1$, covariance matrices and mean values (centers)

$$\mathbf{\Sigma}_{i} = \begin{bmatrix} \mathbf{\Sigma}_{XX,i} & \mathbf{\Sigma}_{XY,i} \\ \mathbf{\Sigma}_{XY,i}^{T} & \sigma_{Y,i}^{2} \end{bmatrix}, \ \boldsymbol{\mu}_{i} = \begin{bmatrix} \boldsymbol{\mu}_{X,i} \\ \boldsymbol{\mu}_{Y,i} \end{bmatrix}. \quad (2)$$

When the model parameters are trained (i.e. by EM) a 2D regression function $y_p(x)$ can be determined using the expected value of the conditional distribution of Y given **X**

 $K = 13000, 39.94 \,\mathrm{dB}$ $K = 5000, 37.29 \,\mathrm{dB}$ $K = 2500, 35.75 \,\mathrm{dB}$ $K = 900, 32.48 \,\mathrm{dB}$ $K = 300, 28.68 \,\mathrm{dB}$

Evolution of the regressed model trained using the proposed optimization method at different stages/values of the regularization parameter λ_S for sparsification.

GMM Adaptations for Gradient Descent Training

A closer look on equation (4) and (5) reveals the independence of experts and gates:

$$m_i(\mathbf{x}) = m_{0,i} + m_{1,i} \cdot x_{1,i} + m_{2,i} \cdot x_{2,i}$$
 (6)

with $m_{0,i} = \mu_{Y,i} - \boldsymbol{\Sigma}_{XY,i}^{T}$, $[m_{1,i} \ m_{2,i}] = \boldsymbol{\Sigma}_{XY,i}^{T} \boldsymbol{\Sigma}_{XX,i}^{-1}$ and $[x_1 \ x_2]^{T} = \boldsymbol{x}$. and gates can be trained independently if needed.

To enforce positive semidefiniteness of each covariance matrix $\Sigma_{XX,i}$ and omit matrix inversion induced instabilities in the training process, we redefine each $\Sigma_{XX,i}^{-1}$ by its Cholesky decomposition:

$$\boldsymbol{\Sigma}_{XX,i}^{-1} := \boldsymbol{\mathsf{A}} \cdot \boldsymbol{\mathsf{A}}^{\mathsf{T}}$$
(7)

$$\mathbf{A} := \begin{pmatrix} a_{1,i} & 0\\ a_{3,i} & a_{2,i} \end{pmatrix} \tag{8}$$

and optimize for $a_{1,i}$, $a_{2,i}$ and $a_{3,i}$ instead.

Multi-Task Optimization

Instead of maximizing the likelihood by the EM algorithm as quality metric, the MSE between image data y_n and parametric regression $y_p(x_n)$ can form a more reasonable optimization criterion for gradient descent training:

$$\mathcal{L}^{\text{MSE}} := \frac{1}{N} \sum_{n=1}^{N} (y_n - y_p(\mathbf{x}_n))^2$$
 (9)

With an additional regularization loss:

$$\mathcal{L}^{\mathsf{S}} := \lambda_{\mathsf{S}} \cdot \sum_{i=1}^{\mathsf{K}} \pi_i \tag{10}$$

Experiments

Prof. Dr.-Ing.

Sikora

	lmage Camera- man	SMoE- Kernel - - - - - - - - - - - - - - - - - - -	GD Pro PSNR 40.07 36.02 32.81	posed SSIM - 0.96 0.93 0.88	SMo Kernel 13378 3845 1933 880	E-GD PSNF 45.91 36.69 33.67 30.93	Grid R SSIM L 0.99 9 0.96 7 0.93 3 0.88	GMI Kernel - 3947 1931 878	VI-Split- PSNR 33.92 31.07 28.29	EM SSIM 0.91 0.87 0.83
	Lena	3876 1934 893	37.17 35.27 32.54	- 0.93 0.9 0.87	13056 3876 1934 893	39.85 35.04 33.13 31.02	5 0.96 1 0.92 3 0.9 2 0.86	4003 1921 854	- 33.95 31.05 28.48	- 0.89 0.85 0.79
	Peppers	3868 1971 896	33.96 33.41 31.94	- 0.84 0.83 0.81	11899 3873 1971 896	36.36 34.24 33.27	5 0.91 4 0.87 7 0.84 8 0.82	3805 1988	32.47 31.08 28.76	0.81 0.79 0.75
	Baboon	3537 1907 889	27.96 25.46 23.46	0.8 0.69 0.56	11576 3539 1907 889	35.25 26.97 24.92 23.34	5 0.98 7 0.84 2 0.72 4 0.58	3532 1869 766	24.76 23.35 21.90	0.63 0.52 0.41
× S	MoE-EM	× SM	oE-Split	:-EM	● SMc	E-GD	Propos	ed O	SMoE-(GD Grid
	40	Ler	a			40	F	Pepper	´S	
'n	35	FEOCOCO 0 0	× ×	×	E E	35		x000 000	b ⁰ 0 ⁰ 0	
D YN Q	30			*	NR [d	30	Contraction of the second seco		*******	
Ъ	25	**			, d) - 25	ſ			
	20 0	2,000 #Ke	4,000 ernels) 6,0	000	20) 2,	000 #Keri	4,000 nels	6,000
	C	Camera	aman			35	E	Baboo	n	
n	40		0 ⁰ 00 00			30			- 00	
NK d	30 30 30		******	•	NR Id	25	and the second sec	8 ⁻⁶⁰⁰⁰⁰⁰	90 0 0 -	
,, 1					ă	20	Second and	****		
	20 0	2,000 #Ke	4,000 ernels) 6,0	000	C) 2,	000 #Keri	4,000 nels	6,000
		2	*		144 144	a				

Visualization of the SMoE noise reduction capabilities. Top Left: Nosiy Input, Top Right: SMoE with-

$$y_{p}(\boldsymbol{x}) = \mathbb{E}[\boldsymbol{Y}|\boldsymbol{X}] = \sum_{i=1}^{K} m_{i}(\boldsymbol{x}) \cdot w_{i}(\boldsymbol{x}) \quad (3)$$

with the so called (hyper-) plane components or simply experts

$$m_i(\mathbf{x}) = \mu_{Y,i} + \mathbf{\Sigma}_{XY,i}^{\mathsf{T}} \mathbf{\Sigma}_{XX,i}^{-1} \left(\mathbf{x} - \boldsymbol{\mu}_{X,i} \right) \quad (4)$$

and weighted soft max gating functions, called gates

$$w_{i}(\boldsymbol{x}) = \frac{\pi_{i} \cdot \mathcal{N}\left(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{\Sigma}_{\boldsymbol{X}\boldsymbol{X}, i}, \boldsymbol{\mu}_{\boldsymbol{X}, i}\right)}{\sum\limits_{j=1}^{K} \pi_{j} \cdot \mathcal{N}\left(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{\Sigma}_{\boldsymbol{X}\boldsymbol{X}, j}, \boldsymbol{\mu}_{\boldsymbol{X}, j}\right)}.$$
 (5)

promoting sparsity of the mixing coefficients π_i , gradually removing low contributing modes from the GMM.

Analogously, the bandwidth of each kernel can be maximized by:

$$\mathcal{L}^{\mathsf{D}} := \lambda_{D} \cdot \sum_{i=1}^{K} \frac{1}{|\Sigma_{XX,i}|} = \lambda_{D} \sum_{i=1}^{K} (a_{1,i} \cdot a_{2,i})^{2}$$
(11)

suppressing the modeling of too small details which are usually introduced by noise. The final multi-task loss is composed as:

$$\mathcal{L} := \mathcal{L}^{\mathsf{MSE}} + \mathcal{L}^{\mathsf{S}} + \mathcal{L}^{\mathsf{D}}$$
(12)

out noise reduction, Bottom Left: SMoE with noise reduction, Bottom Right: BM3D

Conclusion and Further Work

- Gradient Descent outperforms EM for SMoE optimization, regularization can be used to control the desired number of kernels in the model
- Further work: Extension to other types of media (e.g. video or light field)

Contact

Web: www.nue.tu-berlin.de Email: {bochinski,sikora}@nue.tu-berlin.de

Code available at:

https://github.com/bochinski/tf-smoe