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Introduction
The Steered Mixture-of-Experts (SMoE)
framework targets a sparse space-continuous
representation for images, videos, and light
fields enabling processing tasks such as ap-
proximation, denoising, and coding. The un-
derlying stochastic processes are represented
by a Gaussian Mixture Model, tradition-
ally trained by the Expectation-Maximization
(EM) algorithm.
We instead propose to use the MSE of the
regressed imagery for a Gradient Descent op-
timization as primary training objective. Fur-
ther, we extend this approach with regulariza-
tion terms to enforce desirable properties like
the sparsity of the model or noise robustness
of the training process. Experimental eval-
uations show that our approach outperforms
the state-of-the-art consistently by 1.5 dB to
6.1 dB PSNR for image representation.

Original SMoE 34.63 dB JPEG 34.68 dB

Image quality comparison between regressed SMoE

model trained by the proposed method and JPEG at

the same PSNR level.

Steered Mixtures of Experts

Gaussian Mixture Models are used to define
a multivariate joint density distribution for
(spatial input) random vector x and (lumi-
nance output) random variable y as sum of
K weighted Gaussian distributions (kernels)

p (x , y) =

K∑
i=1

πi · N (x , y ;µi ,Σi) (1)

with mixing coefficients πi , for which∑
∀i
πi = 1, covariance matrices and mean val-

ues (centers)

Σi =

[
ΣXX,i ΣXY,i

ΣTXY,i σ2Y,i

]
, µi =

[
µX,i
µY,i

]
. (2)

When the model parameters are trained (i.e.
by EM) a 2D regression function yp (x) can
be determined using the expected value of
the conditional distribution of Y given X

yp (x) = E [Y |X] =

K∑
i=1

mi (x) · wi (x) (3)

with the so called (hyper-) plane components
or simply experts

mi (x) = µY,i + ΣTXY,iΣ
−1
XX,i

(
x − µX,i

)
(4)

and weighted soft max gating functions,
called gates

wi (x) =
πi · N

(
x , y ; ΣXX,i ,µX,i

)
K∑
j=1

πj · N
(
x , y ; ΣXX,j ,µX,j

) . (5)

K = 13000, 39.94 dB K = 5000, 37.29 dB K = 2500, 35.75 dB K = 900, 32.48 dB K = 300, 28.68 dB

Evolution of the regressed model trained using the proposed optimization method at different
stages/values of the regularization parameter λS for sparsification.

GMM Adaptations for Gra-
dient Descent Training
A closer look on equation (4) and (5) reveals
the independence of experts and gates:

mi (x) = m0,i +m1,i · x1,i +m2,i · x2,i (6)

with m0,i = µY,i − ΣTXY,i , [m1,i m2,i ] =

ΣTXY,iΣ
−1
XX,i and [x1 x2]

T = x . and gates can
be trained independently if needed.
To enforce positive semidefiniteness of each
covariance matrix ΣXX,i and omit matrix
inversion induced instabilities in the train-
ing process, we redefine each Σ−1XX,i by its
Cholesky decomposition:

Σ−1XX,i := A · AT (7)

A :=

(
a1,i 0

a3,i a2,i

)
(8)

and optimize for a1,i , a2,i and a3,i instead.

Multi-Task Optimization
Instead of maximizing the likelihood by the
EM algorithm as quality metric, the MSE
between image data yn and parametric re-
gression yp(xn) can form a more reasonable
optimization criterion for gradient descent
training:

LMSE :=
1

N

N∑
n=1

(yn − yp (xn))2 (9)

With an additional regularization loss:

LS := λS ·
K∑
i=1

πi (10)

promoting sparsity of the mixing coefficients
πi , gradually removing low contributing
modes from the GMM.
Analogously, the bandwidth of each kernel
can be maximized by:

LD := λD ·
K∑
i=1

1

|ΣXX,i |
= λD

K∑
i=1

(a1,i · a2,i)2

(11)

suppressing the modeling of too small details
which are usually introduced by noise.
The final multi-task loss is composed as:

L := LMSE + LS + LD (12)

Experiments
Image SMoE-GD Proposed SMoE-GD Grid GMM-Split-EM

Kernel PSNR SSIM Kernel PSNR SSIM Kernel PSNR SSIM
Camera- - - - 13378 45.91 0.99 - - -
man 3844 40.07 0.96 3845 36.69 0.96 3947 33.92 0.91

1928 36.02 0.93 1933 33.67 0.93 1931 31.07 0.87
880 32.81 0.88 880 30.93 0.88 878 28.29 0.83

Lena - - - 13056 39.85 0.96 - - -
3876 37.17 0.93 3876 35.04 0.92 4003 33.95 0.89
1934 35.27 0.9 1934 33.13 0.9 1921 31.05 0.85
893 32.54 0.87 893 31.02 0.86 854 28.48 0.79

Peppers - - - 11899 36.36 0.91 - - -
3868 33.96 0.84 3873 34.24 0.87 3805 32.47 0.81
1971 33.41 0.83 1971 33.27 0.84 1988 31.08 0.79
896 31.94 0.81 896 31.98 0.82 919 28.76 0.75

Baboon - - - 11576 35.25 0.98 - - -
3537 27.96 0.8 3539 26.97 0.84 3532 24.76 0.63
1907 25.46 0.69 1907 24.92 0.72 1869 23.35 0.52
889 23.46 0.56 889 23.34 0.58 766 21.90 0.41

SMoE-EM SMoE-Split-EM SMoE-GD Proposed SMoE-GD Grid
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Cameraman Baboon
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Visualization of the SMoE noise reduction capabili-
ties. Top Left: Nosiy Input, Top Right: SMoE with-
out noise reduction, Bottom Left: SMoE with noise
reduction, Bottom Right: BM3D

Conclusion and Further Work
• Gradient Descent outperforms EM for
SMoE optimization, regularization can
be used to control the desired number
of kernels in the model

• Further work: Extension to other types
of media (e.g. video or light field)

Contact
Web: www.nue.tu-berlin.de
Email: {bochinski,sikora}@nue.tu-berlin.de

Code available at:
https://github.com/bochinski/tf-smoe


