
A FAST HEURISTIC FOR TILE PARTITIONING
AND PROCESSOR ASSIGNMENT IN HEVC 

Panos K. Papadopoulos, Dept. of Computer Science and Biomedical Informatics, Univ. of Thessaly
Maria Koziri, Dept. of Computer Science, Univ. of Thessaly 

Thanasis Loukopoulos, Dept. of Computer Science and Biomedical Informatics, Univ. of Thessaly 

MOTIVATION PRELIMINARIES
• Load balancing
• The compression time of a tile is the aggregation of the compression times

of the CTUs it contains.
• At the start of each frame the expected CTU compression time is estimated

using previously recorded times. The LDE method (LowDelay Estimator)
presented in (Koziri et al., Eusipco17) is used for the estimation.

• Scheduling
• The load of each processor is the aggregate cost of the tiles assigned to it.
• Processor assignment is performed using the MaxMin approach (Brown et

al., JPDC01).
• The heaviest tile (Max) is assigned to the least loaded processor (Min) in

an iterative fashion until all tiles are assigned.

EXAMPLE OF TILE PARTITIONING

Static algorithm FAST algorithm

EXPERIMENTS

Speedup for 4×3 tile partitioning Speedup for 3×3 tile partitioning 

SETUP RESULTS

• Linux Server with two 12-core Intel Xeon E5-2650 running at
2.20GHz

• Class A and B test sequences
• Software: HM 16.15 + OpenMP
• Encoding parameters: QP 32, bit depth 8, CTU 64×64, max depth

4, TZ search

• FAST outperforms Static with large improvement in cases where the
number of available processors is not a divisor of the number of tiles.

• Impact on video coding efficiency is negligible:
• 3×3 tile partitioning: average PSNR difference of 0.016 dB, average

Bitrate increase of less than 2%.
• 4×3 tile partitioning: average PSNR difference of 0.002 dB, average

Bitrate increase of less than 0.1%.
• The overhead of the algorithm is negligible (less than msec per frame).

CONCLUSIONS

• FAST algorithm decides tile sizing and processor
assignment in an adaptive per frame fashion
regardless of the number of processors available.

• Performance evaluation indicated a reduction in
encoding time that reached 37% compared to
static uniform tile partitioning.

• Experimental results indicate that FAST algorithm
has negligible impact to coding efficiency.

• HEVC achieves high compression efficiency, at
the cost of computationally complexity.

• Solution: Parallelization. HEVC offers different
primitives: Slices, Tiles, Wavefront.

• Most works in tile parallelism assume a one on
one tile to thread and thread to processor

assignment. With this assumption they aim at load
balancing processors by balancing tile sizes.

• What happens if the number of processors is less

than the number of tiles?

GOAL

• Assume a one on one thread to processor
assignment but assign multiple tiles per thread, in
order to balance processor load.

• Resize tiles and perform scheduling upon each
frame.

• FAST (Fast Adaptive Scheduling of Tiles)

algorithm offers solution to the combined problem
of both tile partitioning in an adaptive manner and
scheduling the resulting tiles to the available
processors.

• FAST algorithm starts with a uniform M×N tile grid.
• MaxMin allocates tiles to processors.
• Tiles at the most loaded processor change boundaries (by

one CTU row or column) in an attempt to reduce its load.
• The new tile partitioning is reassigned to processors with

MaxMin. If it reduces max processor load it is kept as
candidate.

• The best candidate solution (the one with least max
processor load) is selected and the whole process iterates
until no further load reduction is possible.

FAST ALGORITHM

• Each frame starts with a uniform M×N tile grid (M and N are part of
the input). In Static Algorithm the uniform tile partitioning does not
change.

• In FAST algorithm, tile boundaries are adapted so as to balance
processor load.


