SPEED-UP OF OBJECT DETECTION NEURAL NETWORK WITH GPU

Takuya Fukagai¹, Kyosuke Maeda², Satoshi Tanabe¹, Koichi Shirahata¹, Yasumoto Tomita¹, Atsushi Ike¹, Akira Nakagawa¹
1 FUJITSU LABORATORIES LTD.
2 FUJITSU SOFTWARE TECHNOLOGIES LTD.
Background

- Object detection is one of the most useful and basic applications of deep neural networks
 - NN-based methods achieved the highest scores in the competitions such as ILSVRC and COCO
 - Various detection networks have been proposed
 - Faster R-CNN, R-FCN, YOLO, SSD etc.
- High computational complexity

Accelerators for fast neural network processing

- Highly efficient processing
 - Domain-specific architecture
 - Many cores, specialized cores for NN
 - High memory bandwidth

Fast object detection network processing with NN accelerators
Related Work

- Many algorithms have been proposed to speed-up the calculation of convolution and fully-connected layers in CNN
 - Fast convolution algorithms such as Winograd [2016 Lavin et al.], FFT [2014 Mathieu et al.], summed area table [2017 Kasagi et al.]
 - NN compression algorithms such as Column weight pruning [2017 Wang et al.]

- Lightweight object detection networks (PVANet [2016 Kim et al.])
 - Speed up by redesigning CNN architecture feature extraction part
 - Less channels with more layers, adoption of concatenated ReLU, Inception, HyperNet [Kong et al. 2016], batch normalization, residual connections

→ CNN feature extraction part in object detection networks has been accelerated

Existing works focus on fast computation of CNN layers
Problem

- In detection networks, not only convolution and fully-connected layers but also the other processes require fair amount of time.
- Our evaluation with existing Faster R-CNN implementation (py-faster-rcnn) shows 27.6% of time is used for outside CNN feature extraction.
- These are the common basic processes of detection networks such as Faster R-CNN, R-FCN, YOLO, and SSD.

Diagram:
- Common basic processes take 27.6% of time.
- CNN layers can be further accelerated by improvements of hardware and algorithms.

Text:
- Speed-up of common basic processes becomes more important.
Faster R-CNN Architecture

- The common basic processes are executed on CPU
 - preprocessing, proposal layer, and postprocessing

We speed up the common basic processes with GPU
Proposal

- We propose speed up methods for the common basic processes of the detection networks with GPU
 - We implement the common basic processes with GPU and assign a thread for each element to utilize many cores of GPU
 - Fuse multiple GPU functions (CUDA kernels) to improve memory locality
 - Avoid CPU-GPU data transfer during the common basic processes
 - We design and implement a high speed parallel sorting and a Non-Maximum-Suppression (NMS) with GPU
 - We design an efficient sort algorithm for sorting candidate regions
 - Improve existing GPU-based NMS by skipping unnecessary calculation

Result

- Our GPU-accelerated Faster R-CNN processed in 55.2ms per image
- 25.5% speed-up compared to py-faster-rcnn in whole time
Preprocessing with GPU

- Resize input pictures and subtract average RGB values
 - A thread is assigned for each output pixel
 - We process them in a single GPU function (CUDA kernel)

Example Input Image
500 x 375 pixel

Preprocessed Image
600 x 800 pixel

- Resize input pictures
- Subtract average RGB values
- A thread for each output pixel

- 600 x 800 threads
Postprocessing with GPU

- Build scored candidates of detected results from network outputs, and applies NMS
 - A thread is assigned for each candidate region
 - We process in a single CUDA kernel for each part

Building scored candidates

Non-Maximum-Suppression (NMS)

<table>
<thead>
<tr>
<th>Proposed regions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differences to be added to proposed regions</td>
</tr>
<tr>
<td>Scores for regions</td>
</tr>
</tbody>
</table>

Process in a single CUDA kernel

Process in a single CUDA kernel
Proposal Layer with GPU

- Propose rectangular regions where objects are likely to exist
 - A thread is assigned for each element (anchor or candidate region)
 - We process each part in one or two kernels

Building scored candidate regions

- Fixed anchor regions
- Candidate regions

Sorting of candidate regions

- Sort scored candidate regions and get top 1,000 - 6,000 regions

NMS of candidate regions

- Select high score regions and suppress overlapping regions

Candidate regions
- Proposed regions
Proposal Layer with GPU

- Propose rectangular regions where objects are likely to exist
 - A thread is assigned for each element (anchor or candidate region)
 - We process each part in one or two kernels

We design and implement a high speed parallel sorting and a Non-Maximum-Suppression (NMS) with GPU

Building scored candidate regions

Sorting of candidate regions
Sort scored candidate regions and get top 1,000 - 6,000 regions

NMS of candidate regions
Select high score regions and suppress overlapping regions

Candidate regions → Proposed regions
Our GPU Sorting of Candidate Regions

Step 1: Make sorted blocks of 1024 elements

- The maximum number of threads in a thread block is 1024.
- Multiple blocks are computed in parallel with multiple thread blocks.

Diagram:

- **Sort in descending order**
- **Sort in parallel**
- **Execution order**

- Divide each block into 8 element groups, and sort each group.
 (Sorting 8 elements takes as less computation as dividing to smaller.)

- Merge adjacent 2 sets of sorted elements repeatedly.
Our GPU Sorting of Candidate Regions

- **Step 1**: Make sorted blocks of 1024 elements
- **Step 2**: Gather top sorted elements

Sort in descending order

Sorted 1024 elements

Merge adjacent 2 sets of sorted 1024 elements from rightmost to leftmost using Bubble sort.

Repeat the above sorting, **leaving the leftmost sorted sets**.

Reduce calculation by sorting only top elements
Our GPU Non-Maximum-Suppression

- Evaluate IoU in order to remove overlapping regions
- We assign a thread for each 64 bit mask (64 bit unsigned integer type).
- We categorize the threads into 3 patterns, and evaluate IoU if needed.

![Diagram](image)

Pattern (A)
- 64 bits
- All bits are set to 0 without evaluation

Pattern (B)
- 64 bits
- Regions with lower scores are evaluated

Pattern (C)
- 64 bits
- All areas are evaluated

Skip unnecessary calculations

IoU: Intersection-over-Union
- > threshold then 1, else 0

A thread
Target proposal region
Experiment

- We measure whole cycle time between py-faster-rcnn, PVANet, and our GPU-accelerated Faster R-CNN
 - We implement the inference phase of Faster R-CNN in CUDA
 - Select 4096 images of 500 x 375 pixels from PASCAL VOC 2007
 - Use VGG16 as base CNN for all the implementations

Measurement method

- Since there was a difference in configurations between py-faster-rcnn and the others in our paper, we adjusted the configuration and measured elapsed time of the implementations again with the same configuration
- We measured elapsed time 5 times and show results of the worst values
- We calculate speed-up ratio by 100 x (ET of original) / (ET of proposal)
 - ET: elapsed time

<table>
<thead>
<tr>
<th>CPU</th>
<th>2x Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPU</td>
<td>1x Tesla P100-PCIE-16GB</td>
</tr>
<tr>
<td>OS</td>
<td>Ubuntu 14.04.5 LTS (GNU/Linux 4.2.0-42-generic x86 64)</td>
</tr>
<tr>
<td>Libraries</td>
<td>MKL (v20170003), CUDA 8.0, cuDNN v5.1</td>
</tr>
</tbody>
</table>
Results: Whole Cycle Time

- Our GPU-accelerated Faster R-CNN processed in 55.2ms per image (**25.5% speed-up** with batch size 1)
 - 8.21% faster compared to PVANet with VGG16
 - Further speed-up is obtained by increasing batch size: 54.3% speed-up with batch size 16
Results: Whole Cycle Time

- Our GPU-accelerated Faster R-CNN processed in 55.2ms per image (25.5% speed-up with batch size 1)
- 8.21% faster compared to PVANet with VGG16
- Further speed-up is obtained by increasing batch size: 54.3% speed-up with batch size 16

We show breakdown of py-faster-rcnn and Our GPU-accelerated Faster R-CNN with batch size 1.
Results: Breakdown

- Our GPU-accelerated Faster R-CNN outperformed py-faster-rcnn by 4.51x in preprocess plus postprocess, and 3.52x in proposal layer.

We confirm speed-up of the common basic processes.
Conclusions

- We propose speed-up methods for Faster R-CNN with GPU
 - We realized a speed-up of the common basic processes in object detection networks
 - Our speed-up methods are applicable to other detection networks such as R-FCN, YOLO, and SSD

- We evaluate the speed-up of Faster R-CNN by comparing with py-faster-rcnn
 - Our GPU-accelerated Faster R-CNN processed in 55.2ms per image: 25.5% speed-up compared to py-faster-rcnn
 - We expect to observe more significant speed-up when we apply our methods to the network with less convolution and fully-connected layers

Future work

- Apply our GPU-based parallel processing methods to other object detection neural networks such as R-FCN, SSD, YOLO etc. and evaluate their effectiveness