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Introduction

ADeep Learning based object detection has excellent accuracy.

Ae.g . Vision for security, infrastructure, transportation

ACost?
ARequires many GPU  -hours, difficult to scale.
AHas accuracy -cost tradeoff. W
101-layer Resnet: 10-layer Resnet: fig
Imagenet accuracy /8% Imagenet accuracy 60% .

.................................................

AHow can we break this tradeoff?
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Introduction: Domain Specific Models

ATraining compact domain specific models (DSMs) [1,2 ]

ADSMs: a specialized  model for specific env.
{conference room, your house, your office, etc.}

ACuts down computation cost 5-20 X

Survelllance Cam data
General dataset s, s o e e

Images from MS—COCOhttp //cocodataset orq/ )

[1]D. Kang, oNoscope : optimizing neural network queries over video at scale
[2] R.Mullapudi 0 On | madd distillation for efficient video inference , 0



http://cocodataset.org/

Introduction: What is Distillation?

ATeacher model teaches the small student model to learn

AWorks without human interference
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Introduction: The Problem

ACan gather lots of training data easily..

AAday s worth of datarveill an
= 86,400 images @ 1FPS ’

ATraining 86,400 images require over 100 GPU-hours
(Nvidia K80 on AWS) to train .

AUnable to scale to deploying thousands of cameras

AReducing the DSM training cost has not been explored.
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Dataset Culling
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Basic Idea of Dataset Culling

AReduces the dataset size 300x

ACulls only =E a s yd&ta; model accuracy is not harmed
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Total training time:

- E C=> 104 A 2.2 GPU-hours

300x ‘Difficult”
reduction dataset

Raw dataset 47x improvement J
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What Is good training data?

A-Di f f i ¢ u lwhi¢h thd model makes a lot of mistakes.

ANo backprop is done if the model can perfectly predict.
A Does not contribute to training.

AComparing teacher  -student predictions are costly..

ACan we assess from student predictions only?



How can we pick good training data?

AQuanti fy

AAssesses the difficulty of prediction

good dat a
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from the output probability

Compute loss for all detections..
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Dataset culling pipeline

AFirst, cull dataset using only the student model

ACulls out majority of the data first (50x).
ACheap; does not require costly teacher inference.

1) Cull by confidence loss L,
- oo m—m—_————— =~

Raw E Compute student prediction ‘i Cu ”
dataseti Q i 5 OX
:>: Compute confidence loss (L., |] :">
i Sz i
i Pick n data with largest L, i

7
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Dataset culling pipeline

AThen, conduct a secondary culling using both
teacher -student predictions

ADirectly determine errors the student makes.

AData is culled up to
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2) Cull by precision L,

———————————— ~

Compute teacher prediction

~ 8.2

Compute precision loss (me)]
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Pick n data with largest L.,

300x by the pipeline.
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Detalls in paper

) optResolution
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Reduce image resolution 0.9x

X

Compute L,

Iﬁ while MSE
bR threshold:
I >
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Experiments
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Experiment setups

AModels pretrained on MS -COCO:

AStudent: Resnet -18 based Faster -RCNN
ATeacher: Resnet -101 based Faster -RCNN

ADataset: 8 custom videos acquired from Youtube
ATrain: first 24 -hours
AValidation: Subsequent 6 -hours

AUtlIlze teacher output as ground -truths
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Qualitative results

RawStudent TrainStudent TrainStudent+optResolution Teacher
MAP=78.2, comp=28G mMAP=90.2, comp=28G MAP=89.6, comp=7/G Oracle, comp=128G

MAP=71.3, comp=28G mMAP=94.8, comp=28G mMAP=93.2, comp=18G Oracle, comp=128G

MAP=52.7, comp=28G mMAP=81.6, comp=28G mAP=80.7, comp=18G Oracle, comp=128G
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