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Challenges in video processing for visual surveillance such as shadows,
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Analogy between (a) Cell duplication and (b) video capture by a surveillance system. Foreground identification process. A foreground object, Fa, is visible in all scanlines that are analysed, occluding various background regions. descriptors and the detection of associated objects within a video.

« Added value demonstrated by evaluation performed on a standard video

‘Vide-omics’-based foreground modelling

Segment-based clustering: Given a set of foreground object segments, a phylogenetic dataset comprising a variety of scenes and camera motions.
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tree is built encapsulating the similarity among segments. Families of segments in the « Usage of those object descriptors for direct foreground detection in
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T - eseao tree can be discovered by finding groups characterised by significant intra-group unseen frames to be investigated in future work.
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