A Matrix-Free Reconstruction Method for Compressive Focal Plane Array Imaging

Alper Güngör, Öğuzhan Fatih Kar, H. Emre Güven, AELSAN Research Center, Ankara, TURKEY

Introduction

- High Resolution & Contrast imaging requirement
- Large FPA sensors are expensive
- Effect of noise & bad pixel
- Compressive Sensing → Compressive Focal Plane Array Imaging
- Digital Micromirror Devices (DMD)
- Compressive Sensing reconstruction algorithms are slow
 - Real-time application
 - Large matrix multiplication

Motivation

- Real-time applicable algorithms needed for reconstruction.
- Alternating Direction Method of Multipliers (ADMM) for fast convergence
- Requires large matrix inversion with ADMM
- Robustness against bad pixels.
- Fast implementation

Observation Model

- Multiple snapshots, each modulated using a DMD mask
- Linear Forward Model:
 - \(y = Ax + n \) (1)
 - \(A \): Bernoulli type block-diagonal sensing matrix.
 - \(y_j = A x_j + n_j \) (2)
 - Full +1/-1 sensing matrix
 - \(x \): scene, \(n \): noise

Previous Approaches

- Main advantage:
 - Lower computational complexity \((O(mN + Nlg(N) + kN))\)
 - \(m \to s lg(N) \)
 - Faster convergence, complexity of OMP

Theory

- Approach:
 - Break block-sparse structure (reorder)
 - \(A = [(D \Lambda_1)^T \cdots (D \Lambda_m)^T]^T \)
 - \(D \): Downsampling operator, \(\Lambda_i \): Mask at snapshot \(i \).
- \[\min_{\alpha_1, \alpha_2} TV(x) + \alpha_1 \|Fx\|_1 \] subject to \[\|D \Lambda_i x - y_i\|_2 \leq \varepsilon_i \]
- \(\varepsilon_i^2 \): noise energy in snapshot \(i \)

Advantages

- Faster than state-of-the-art (TVAL3)
- Better image quality using linear combination of two sparsifying bases

Proposed Method

- An Alternating Direction Method of Multipliers (ADMM) was developed.
- \[\min_{x,z} f_1(x) + f_2(z) \] subject to \(x = z^{(1)}, \ldots, z = z^{(2+m)} \)
- Set \(f_2(z) = \alpha_1 TV(z^{(1)}) + \alpha_2 \|Fz^{(2)}\|_1 + \sum_i (|D \Lambda_i x^{(2+i)} - y_i|_2 \leq \varepsilon_i)_1 f_i(x) = 0 \).
- Solve 2 proximal mappings and \(m \) projections.
 - Total Variation → Chambolle Projection [2]
 - L1-norm → Soft Thresholding
 - Indicator Functions → Derived in the Paper

Results

- Comparison to literature
 - TVAL3
 - Matrix-based ADMM
 - Projection-based ADMM (Proposed)
- Faster than state-of-the-art (TVAL3)
- Better image quality using linear combination of two sparsifying bases

References

Figure 1: Observation model, modulation using DMD

Figure 2: Convergence Ratio (%)

Figure 3: Reconstruction PSNRs vs computation time (%20 compression)

Figure 4: Reconstruction from simulated data: (a) Reference image. (b) Low-resolution image obtained using the FPA sensor. (c) Reconstruction using TVAL3. (d) Reconstruction using the proposed algorithm

Figure 5: Reconstruction from experimental data: (a) Reference image. (b) Low-resolution image obtained using the FPA sensor. (c) Reconstruction using TVAL3. (d) Reconstruction using the proposed algorithm