Markov Random Field Based Pruning and Learning Based Rescoring for Object Detection

Naoto Inoue, Ryosuke Furuta, Toshihiko Yamasaki, Kiyoharu Aizawa

Dept. Information and Communication Engineering, The University of Tokyo

Background

“Context” in object detection
- information out of each candidate window
- co-occurrence of objects, spatial layout, scale, background, scene of image...

R-CNN based methods do not consider context.

Proposed Method

1. **Pruning by MRF**
 - Decide whether each window should be pruned ($w = 1$) or not ($w = 0$).
 - Better than just setting threshold.

2. **Rescoring by SVM**
 - Predict whether each window is correct by SVM.
 - New score s_w is calculated based on decision value d_w.

Experimental Results

Evaluation

Dataset: VOC2007 and MSCOCO.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>VOC2007-test</th>
<th>MSCOCO-val</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation metric</td>
<td>mAP [%]</td>
<td>F1 [%]</td>
</tr>
<tr>
<td>Baseline (Fast R-CNN)</td>
<td>66.9</td>
<td>3.5</td>
</tr>
<tr>
<td>+ Tree Context [Choi+, 2012]</td>
<td>60.9 (6.0)</td>
<td>3.5 (+0.0)</td>
</tr>
<tr>
<td>+ HOOD [Cao+, 2015]</td>
<td>57.9 (-0.9)</td>
<td>67.2 (+63.7)</td>
</tr>
<tr>
<td>+ threshold</td>
<td>66.5 (-0.4)</td>
<td>24.4 (+20.9)</td>
</tr>
<tr>
<td>+ pruning</td>
<td>66.5 (-0.4)</td>
<td>26.2 (+22.7)</td>
</tr>
<tr>
<td>+ pruning + rescoring</td>
<td>67.3 (+0.4)</td>
<td>26.2 (+22.7)</td>
</tr>
</tbody>
</table>

Conclusion

- Reducing and rescoring candidate windows by considering contextual model.
- Fast R-CNN detectors are improved by +0.4% on mAP and +22.7% on F1 in VOC2007-test.
+0.7% on mAP and +2.6% on F1 in MSCOCO-val.
- Applications to structured retrieval are also presented.