Background

Increased demand for efficient mel-spectrogram vocoder

Text-to-speech synthesis (Text → Waveform)

Voice conversion (Waveform → Waveform)

Objective of this study: Speed up & reduce weights

Typical mel-spectrogram vocoders

Signal processing-based solution

![Waveform](image1)

DNN-based shortcut solution

![Waveform](image2)

Pros: Exploits time-frequency structure explicitly

Cons: Requires redundant estimation (reconstruction of high-dim. spec.)

Proposed: iSTFTNet

Hybrid of DNN upsampling & iSTFT signal processing

Theoretical Background

Time-frequency trade-off

\[f_1 \cdot 1 = f_2 \cdot s = \text{constant} \]

FFT size Time scale

We can simplify frequency structure by increasing time scale

Architectures of iSTFTNets

- **Model:** iSTFTNet
- **Ground truth:** 4.46 ± 0.042
- **iSTFTNet:** 4.22 ± 0.020
- **Conformer-FS2:** 4.09 ± 0.066

Results (Synthesis from ground-truth mel-spectrogram)

Q1. How many blocks should be retained?

- **iSTFTNet:**
 - Best quality: 4.22 ± 0.020
 - Reasonable quality: 4.09 ± 0.066

Q2. Necessity of combining DNN upsampling & iSTFT

- **iSTFTNet:**
 - Best quality: 4.22 ± 0.020
 - Reasonable quality: 4.09 ± 0.066

Q3. Comparison with benchmark models

- **Model:** iSTFTNet
 - Best quality: 4.22 ± 0.020
 - Reasonable quality: 4.09 ± 0.066

Application to text-to-speech synthesis

- **iSTFTNet** is better than or comparable with baselines
- **iSTFTNet** is comparable with ground truth