
1

Achieving Centimeter Accuracy Indoor Localization
on WiFi Platforms: A Frequency Hopping Approach

Chen Chen, Student Member, IEEE, Yan Chen, Senior Member, IEEE, Yi Han, Student Member, IEEE,
Hung-Quoc Lai, and K. J. Ray Liu, Fellow, IEEE

Abstract—Indoor positioning systems are attracting more and
more attention from the academia and industry recently. Among
them, approaches based on WiFi techniques are more favorable
since they are built upon the WiFi infrastructures available in
most indoor spaces. However, due to the bandwidth limit in main-
stream WiFi systems, the indoor positioning system leveraging
WiFi techniques can hardly achieve centimeter localization accu-
racy under strong non-line-of-sight conditions, which is common
for indoor spaces. In this paper, we present a WiFi-based indoor
positioning system that achieves centimeter accuracy in non-
line-of-sight scenarios by exploiting the frequency diversity via
frequency hopping. During the offline phase, the system collects
channel state information from multiple channels at locations-of-
interest. Then, the channel state information are post-processed to
combat the synchronization errors and interference. The channel
state information from multiple channels are then combined
into location fingerprints via bandwidth concatenation and in
a database. During the online phase, channel state information
from an unknown location are formulated into the location
fingerprint and is compared against the fingerprints in the
database using the time-reversal resonating strength. Finally, the
location is determined by the calculated time-reversal resonating
strengths. Extensive experiment results demonstrate a perfect
centimeter accuracy in an office environment in non-line-of-sight
scenarios with only one pair of single-antenna WiFi devices.

Index Terms—WiFi, indoor localization, channel state infor-
mation, time-reversal, resonating strength.

I. INTRODUCTION

Global Positioning System (GPS) is an outdoor positioning
system that provides real-time location information under all
weather conditions near the Earth’s surface, as long as there
exists an unobstructed line-of-sight (LOS) from the device to
at least four GPS satellites [1]. On the other hand, accurate
indoor localization is highly desirable, since nowadays people
spend much more time indoor than outdoor. A high accuracy
indoor positioning system (IPS) can enable a wide variety
of applications, e.g., providing museum guides to tourists by
localizing their exact locations [2], or supplementing users
with location information in shopping malls [3]. Unfortunately,
the GPS signal cannot provide reliable location information
indoor, since it is severely attenuated by the walls in the
building and scattered by numerous reflectors in an indoor
environment.
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Many research efforts have been devoted to the development
of accurate and robust IPSs. According to the technologies
adopted, these IPSs can be further classified into two classes,
i.e., ranging-based and fingerprint-based [4]. For the ranging-
based methods, at least three anchors are deployed into the
indoor environment to triangulate the device through measur-
ing the relative distances between the device to the anchors.
The distances are generally obtained from other measurements,
e.g., received signal strength indicator (RSSI) and time of
arrival (TOA). RSSI-based ranging methods [5]–[7] utilizes
the path-loss model to derive the distance and can typically
achieve an accuracy of 1 ∼ 3m on average under LOS
scenarios, while TOA-based ranging methods retrieve the TOA
of the first arrived multipath component from the channel
impulse response (CIR). To achieve a fine timing resolution,
TOA-based methods require a large bandwidth, which is
available with ultra-wideband (UWB) techniques. With UWB,
the localization accuracy is 10 ∼ 15cm in a LOS setting [8],
[9].

On the other hand, the fingerprint-based approaches harness
the naturally existing spatial features associated with different
locations, e.g., RSSI, CIR, and channel state information
(CSI), where CSI is a fine-grained information readily avail-
able in WiFi systems that portraits the environment. In these
schemes, fingerprints of different locations are stored in a
database during the offline phase. In the online phase, the
fingerprint of the current location is compared against those
in the database to estimate the device location. In [10]–[12],
RSSI values from multiple access points (APs) are utilized
as the fingerprint, leading to an accuracy of 2 ∼ 5m. The
accuracy is further improved to 0.95 ∼ 1.1m by taking CSIs
as the fingerprint [13]–[15]. In [16], Zhung-Han et al. obtain
CIR fingerprints under a bandwidth of 125 MHz and calculate
the time-reversal (TR) resonating strength as the similarity
measure among different locations, which gives an accuracy
of 1 ∼ 2cm under non-line-of-sight (NLOS) scenarios.

Summarizing the ranging-based and fingerprint-based
schemes, we find that

1) The accuracy of the ranging-based methods are sus-
ceptible to the correctness of the physical rules, e.g.,
path-loss model, which degrades severely in the complex
indoor environment. The existence of large number of
multipath components and blockage of obstacles in
indoor spaces impair the precision of the physical rules.

2) The fingerprint-based methods, which can work under
strong NLOS environment, require a large bandwidth for
accurate localization. Since the maximum bandwidth of
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the mainstream 802.11n is 40 MHz, IPSs utilizing WiFi
techniques cannot resolve enough independent multipath
components in the environment. The shortage of avail-
able bandwidth introduces ambiguities into fingerprints
associated with different locations, and thus degrades the
localization accuracy. On the other hand, a bandwidth as
large as 125 MHz that leads to centimeter accuracy [16]
can only be achieved on dedicated hardware and incurs
additional costs in deployment.

Is there any approach that can achieve the centimeter local-
ization accuracy using WiFi devices in an NLOS environment?
The answer is affirmative. In [17], Chen et al. present an IPS
that achieves centimeter accuracy using one pair of single-
antenna WiFi devices under strong NLOS conditions using
frequency hopping. The IPS obtains CSIs and formulates
location fingerprints from multiple WiFi channels in the offline
phase, and calculates TR resonating strengths for localization
in the online phase. However, interference from other WiFi
networks might corrupt the fingerprint, which is neglected
in [17]. To deal with the interference, in this work, we
introduce an additional step of CSI sifting. Moreover, we
utilize CSI averaging to mitigate the impact of channel noise
and refine the fingerprint. Additionally, we provide much more
details and analysis on the experiment results. In comparison
with the existing works, the proposed method embraces the
multipath effect and is infrastructure-free since it is built upon
the WiFi networks available in most indoor spaces.

The main contributions of this work can be summarized as
follows:
• We propose an IPS that can achieve centimeter accuracy

in an NLOS environment with one pair of single-antenna
WiFi devices. The proposed IPS eliminates the impact
of interference from other WiFi networks through the
process of CSI sifting.

• Leveraging the frequency diversity, we demonstrate that
a large effective bandwidth can be achieved on WiFi
devices by means of frequency hopping to overcome the
issue of location ambiguity issue on traditional WiFi-
based approaches.

• We conduct extensive experiments in a typical office
environment to show the centimeter accuracy within an
area of 20cm×70cm under strong NLOS conditions.

The rest of the paper is organized as follows. In Section II,
we introduce the TR technique and the channel estimation in
WiFi systems. In Section III, we elaborate on the proposed
localization algorithm. In Section IV, we present the experi-
ment results in a typical office environment. Finally, we draw
conclusions in Section V.

II. PRELIMINARIES

In this part, we introduce the background of the TR tech-
nique and the channel estimation schemes in WiFi systems.

A. Time-Reversal

TR is a signal processing technique capable of mitigating
the phase distortion of a signal passing a linear time-invariant

(LTI) filtering system. It is based upon the fact that when the
LTI system h(t) is concatenated with its time-reversed and
conjugated version h∗(−t), the phase distortion is completely
cancelled out at a particular time instance.

A physical medium can be regarded as LTI if it satisfies
inhomogeneity and invertibility. When both conditions hold,
TR focuses the signal energy at a specific time and at a par-
ticular location, known as the spatial-temporal focusing effect.
Such focusing effect is observed experimentally in the field of
ultrasonics, acoustics, as well as electromagnetism [18]–[21].
Leveraging the focusing effect, TR is applied successfully to
the broadband wireless communication systems [22].

Fig. 1 shows the architecture of the TR communication sys-
tem consisting of two phases, namely, channel probing phase
and transmission phase. Here, we assume that transceiver
A intends to send some data to transceiver B. During the
channel probing phase, transceiver B sends an impulse signal
to transceiver A, and transceiver A extracts the CIR based
on the impulse signal, time-reverses, and takes conjugate of
the CIR to generate a waveform. During the transmission
phase, transceiver A convolves the transmitted signal with
the waveform and sends to transceiver B. In this process,
the channel acts as a natural matched filter due to the time-
reversal operation. The TR focusing effect could be observed
at a specific time instance and only at the exact location of
transceiver B.

In virtue of the high-resolution TR focusing effect, in this
work, we utilize TR as the signal processing technique to mea-
sure the similarity among fingerprints of different locations.

Fig. 1. The architecture of TR wireless communication system.

B. Channel Estimation in WiFi systems

In a WiFi system adopting the orthogonal frequency-
division multiplexing (OFDM), the transmitted data symbols
are spread onto several subcarriers to improve the robustness
of the wireless communication against frequency-selective
fading. Assuming a total of K usable subcarriers and denote
the transmitted data symbol on the k-th subcarrier with index
uk as Xuk , the received signal on subcarrier uk, denoted by
Yuk , takes the form as [23]

Yuk = HukXuk +Wuk , k = 1, 2, · · · ,K, (1)

where Huk is the CSI on subcarrier uk and Wuk is the complex
Gaussian noise on subcarrier uk.

To facilitate channel estimation, two identical sequences
consisting of predetermined data symbols, known as the long
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Fig. 2. Flowchart of the algorithm.

training preamble (LTP), are appended before the actual data
frames. Therefore, given known LTP data symbols Xuk,0, the
CSI Huk can be estimated by [24]

Ĥuk =
Yuk
Xuk,0

, k = 1, 2, · · · ,K. (2)

Eq. (2) is only valid in the absence of synchronization
errors. In practice, synchronization errors cannot be neglected
and they introduce additional phase rotations into Ĥuk . The
synchronization errors are mainly composed by (i) channel
frequency offset (CFO) ε caused by the misalignment of
the local oscillators at the WiFi transmitter and receiver (ii)
sampling frequency offset (SFO) η due to the mismatch
between the sampling clock frequencies at the WiFi transmitter
and receiver (iii) symbol timing offset (STO) ∆n0 caused by
the imperfect timing synchronization at the WiFi receiver.

In the presence of the aforementioned synchronization er-
rors, the CSI associated with the i-th LTP, denoted as Ĥuk

i ,
can be rewritten as [25]

Ĥuk
i = Huke

j2π(βiuk+αi) +Wi,uk , k = 1, 2 · · · ,K , (3)

where

αi =

(
1

2
+
iNs +Ng

N

)
ε (4)

βi =
∆n0

N
+

(
1

2
+
iNs +Ng

N

)
η (5)

are the initial and linear phase distortions respectively. N is
the size of Fast Fourier Transform (FFT), Ng is the length
of the cyclic prefix, Ns is the total length of one OFDM
frame with length N +Ng , and Wi,uk is the estimation noise
on subcarrier uk for the i-th LTP, which can be modeled as
complex Gaussian noise [26].

III. PROPOSED ALGORITHM

A. Calculation of the TR Resonating Strength in Frequency
Domain

In the proposed IPS, the similarity of locations are measured
by the TR resonating strength between their fingerprints. In
this section, we provide details of TR resonating strength
computation.

Given two time-domain CIRs ĥ and ĥ′, with ĥ =
[ĥ[0], ĥ[1], · · · , ĥ[L− 1]]T and ĥ′ defined similarly, where T
is the transpose operator, the resonating strength between ĥ
and ĥ′ is calculated as [16]

γCIR[ĥ, ĥ′] =
max
i

∣∣∣(ĥ ∗ ĝ) [i]
∣∣∣2

〈ĥ, ĥ〉〈ĝ, ĝ〉
, (6)

where ∗ denotes the convolution operator, ĝ is the time-
reversed and conjugate version of ĥ′, and 〈x,y〉 is the inner
product operator between vector x and vector y, expressed by
x†y. Here, (·)† is the Hermitian operator. Notice that, the com-
putation of γCIR[ĥ, ĥ′] removes the impact of STO by search-
ing all possible index i across the output of

∣∣∣(ĥ ∗ ĥ′) [i]
∣∣∣. It

can be shown that 0 ≤ γCIR[ĥ, ĥ′] ≤ 1.
Since the convolution in time domain is equivalent to the

inner product in frequency domain [27], the TR resonat-
ing strength can be calculated using CSIs, the frequency-
domain counterparts of CIRs. Given two CSIs Ĥ =
[Ĥu1

, Ĥu2
, · · · , ĤuK ]T and Ĥ′ defined similarly, and assume

that the synchronization errors are mostly mitigated, the TR
resonating strength in frequency domain is given by

γ[Ĥ, Ĥ′] =

∣∣∣∑K
k=1 ĤukĤ

′
uk

∣∣∣2
〈Ĥ, Ĥ〉〈Ĥ′, Ĥ′〉

. (7)

It is straightforward to prove that 0 ≤ γ[Ĥ, Ĥ′] ≤ 1, and
γ[Ĥ, Ĥ′] = 1 if and only if Ĥ = CĤ′ where C 6= 0 is any
complex scaling factor. Therefore, the TR resonating strength
can be regarded as a measure of similarity between two CSIs.

B. Indoor Localization Based on TR Resonating Strength

The proposed localization algorithm consists of an offline
phase and an online phase. The details of the two phases are
illustrated in Fig. 2 and are elaborated below.

1) Offline Phase: In the offline phase, the CSIs are mea-
sured at D channels, denoted by f1, f2, · · · , fd, · · · , fD, and at
L locations-of-interest, denoted by 1, 2, · · · , `, · · · , L. Assume
that a total of N`,fd CSIs are measured from the first and
second LTPs at location ` and channel fd, we write the CSI
matrix as

Ĥi [`, fd] =
[
Ĥi,1[`, fd] · · · Ĥi,m[`, fd] · · · Ĥi,N`,fd

[`, fd]
]
,

(8)
where m = 1, 2, · · · , N`,fd is the realization index,
i ∈ {1, 2} is the LTP index, and Ĥi,m[`, fd] =
[Ĥu1

i,m[`, fd] · · · Ĥuk
i,m[`, fd] · · · ĤuK

i,m[`, fd]]
T with Ĥu1

i,m[`, fd]
standing for the m-th CSI of the i-th LTP on subcarrier uk,
and at location `, channel fd.



4

Subcarrier Index
-20 -10 0 10 20

A
m

p
lit

u
d

e

0.02

0.03

0.04

0.05

0.06

0.07

Subcarrier Index
-20 -10 0 10 20

P
h

a
s
e

 (
ra

d
ia

n
)

0

5

10

Subcarrier Index
-20 -10 0 10 20

A
m

p
lit

u
d

e

0.02

0.03

0.04

0.05

0.06

0.07

Subcarrier Index
-20 -10 0 10 20

P
h

a
s
e

 (
ra

d
ia

n
)

-0.2

-0.1

0

0.1

0.2

Subcarrier Index
-20 -10 0 10 20

A
m

p
lit

u
d

e

0.02

0.03

0.04

0.05

0.06

Subcarrier Index
-20 -10 0 10 20

P
h

a
s
e

 (
ra

d
ia

n
)

-0.2

-0.1

0

0.1

0.2

Subcarrier Index
-20 -10 0 10 20

A
m

p
lit

u
d

e

0.02

0.04

0.06

0.08

Subcarrier Index
-20 -10 0 10 20

P
h

a
s
e

 (
ra

d
ia

n
)

0

5

10

Subcarrier Index
-20 -10 0 10 20

A
m

p
lit

u
d

e

0.02

0.04

0.06

0.08

Subcarrier Index
-20 -10 0 10 20

P
h

a
s
e

 (
ra

d
ia

n
)

-0.4

-0.2

0

0.2

Subcarrier Index
-20 -10 0 10 20

A
m

p
lit

u
d

e

0.02

0.04

0.06

0.08

Subcarrier Index
-20 -10 0 10 20

P
h

a
s
e

 (
ra

d
ia

n
)

-0.2

0

0.2

Frequency (GHz)
4.9 4.902 4.904 4.906 4.908 4.91 4.912 4.914 4.916

A
m

p
lit

u
d

e

0.02

0.04

0.06

0.08

Frequency (GHz)
4.9 4.902 4.904 4.906 4.908 4.91 4.912 4.914 4.916

P
h

a
s
e

 (
ra

d
ia

n
)

0

0.2

0.4

Fig. 3. An example of CSI post-processing, channel fingerprint generation, and location fingerprint generation.

The location fingerprint is generated from Ĥi [`, fd]. The
process contains 4 steps, which are presented below.

1. CSI Sanitization
The captured CSIs must be sanitized so as to mitigate the
impact of initial and linear phase distortions shown in (3).
First of all, we estimate the residual CFO and SFO from the
channel estimation using [28]

Ωukm [`, fd] =
[
Ĥuk

1,m[`, fd]
]∗
× Ĥuk

2,m[`, fd]

= ej2π
Ns
N φuk |Huk

1,m[`, fd]|2sinc2 (πφuk) + ψukm [`, fd], (9)

where φk = ε + ηk, sinc2 (πφk) ≈ 1 since πφuk is small,
and ψukm [`, fd] contains all cross terms. Therefore, φuk can be
estimated by

φ̂uk = ] [Ωukm [`, fd]] , (10)

where ][X] is the angle of X measured in radians. Compen-
sating φ̂uk gives

H̃uk
i,m[`, fd] = Ĥuk

i,m[`, fd]e
−jπφ̂uk e−j2π

Ng+(i−1)Ns
N φ̂uk (11)

Substituting (11) into (8) and writing the updated Ĥi [`, fd]
in (8) as H̃i [`, fd], we take the average of H̃1 [`, fd] and
H̃2 [`, fd] as H̃ [`, fd] =

(
H̃1 [`, fd] + H̃2 [`, fd]

)
/2.

After the removal of residual CFO and SFO, the STO still
remains to be compensated. Write

H̃ [`, fd] =
[
H̃1[`, fd] · · · H̃m[`, fd] · · · H̃N`,fd

[`, fd]
]
, (12)

where H̃m[`, fd] = [H̃u1
m [`, fd] · · · H̃uk

m [`, fd] · · · H̃uK
m [`, fd]]

T

is the CSI vector for the m-th realization on usable sub-
carriers after CFO/SFO correction. Denote Aukm [`, fd] =

]
{
H̃uk
m [`, fd]

}
as the angle of H̃uk

m [`, fd], we perform phase

unwrapping on Aukm [`, fd] to yield A
′uk
m [`, fd]. The slope of

A
′uk
m [`, fd] is linear with STO if we disregard the noise and

interference. To estimate the slope, we perform a least-square
fitting on A

′uk
m [`, fd] expressed by

∆̂n0 =
N
∑K
k=1 [(uk − u)]

[
A
′uk
m [`, fd]−A

]
2π
∑K
k=1 [uk − u]

2
, (13)

where u =
∑K
k=1 uk
K and A =

∑K
k=1 A

′uk
m [`,fd]

K . Therefore,
H̃uk
m [`, fd] is compensated as

Ȟuk
m [`, fd] = H̃uk

m [`, fd]e
−juk∆̂n0

2π
N . (14)

The compensated CSI matrix is denoted by

Ȟ [`, fd] =
[
Ȟ1[`, fd] · · · Ȟm[`, fd] · · · ȞN`,fd

[`, fd]
]
. (15)

2. CSI Sifting
Due to the presence of other WiFi devices in the envi-
ronment, some CSI measurements might suffer from large
interference from the traffic of nearby WiFi devices or radio-
frequency systems, and should be excluded from further
calculations. The interference introduces random noise onto
the CSIs and impairs the CSI qualities. To combat the in-
terference, firstly, we use Ȟm[`, fd] to calculate the N`,fd ×
N`,fd resonating strength matrix R`,fd , where Ȟm[`, fd] =[
Ȟu1
m [`, fd] · · · Ȟuk

m [`, fd] · · · ȞuK
m [`, fd]

]T
with γ[·, ·] defined

in (7). The (i, j)-th entry of R`,fd is

[R`,fd ]i,j = γ
[
Ȟi[`, fd], Ȟj [`, fd]

]
. (16)

Secondly, we compute the column-wise average of R`,fd
denoted as Oj with j = 1, 2, · · · , N`,fd , given by

Oj =
1

N`,fd − 1

∑
i=1,2,··· ,N`,fd

i 6=j

[R`,fd ]i,j . (17)

Finally, we remove the j′-th column of Ȟ [`, fd] if Oj′ ≤ τ ,
where τ is a threshold.

We assume that the number of remaining CSIs after CSI
sifting is N ′`,fd , and the corresponding index of the remaining
CSIs are t1, · · · , tm, · · · , tN ′`,fd .

3. CSI Averaging
At location `, for channel fd, we generate the averaged CSI
S [`, fd] = [Su1

`,fd
· · ·Suk`,fd · · ·S

uK
`,fd

]T with dimension K×1 as

S [`, fd] =
1

N ′`,fd

N ′`,fd∑
m=1

Ȟtm [`, fd] ·Wm , (18)

where · stands for the element-wise dot product between two
vectors. Wm is a K × 1 vector represented as

Wm =
[
wm[`, fd] wm[`, fd] · · · wm[`, fd]

]T
, (19)
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where wm[`, fd] = ej(][Ȟu1t1 [`,fd]]−][Ȟu1tm [`,fd]]). The pur-
pose of introducing Wm is to match the initial phases of
Ȟtm [`, fd] with m > 1 to the first realization Ȟt1 [`, fd], so
that Ȟtm [`, fd] can be accumulated coherently, and the noise
variance contained in Ȟtm [`, fd] is reduced by N ′`,fd times
consequently.

4. Bandwidth Concatenation
At location `, we obtain the fingerprint vector with dimension
DK×1 by concatenating the averaged CSIs from all channels
{fd}d=1,2,··· ,D as

G[`] =
[
ST [`, f1]V1 · · ·ST [`, fd]Vd · · ·ST [`, fD]VD

]T
,

(20)

where Vd = e
−j]

[
S
u1
`,fd

]
is introduced to nullify the initial

phases of different ST [`, fd].
Fig. 3 demonstrates an example of the fingerprint generation

procedure. As can be observed from Fig. 3, the CSI post-
processing effectively removes the phase distortions caused by
the synchronization errors. The CSI averaging combines dif-
ferent realizations coherently, and the bandwidth concatenation
associates two averaged CSI into the location fingerprint.

Since we concatenate all available bandwidths from D chan-
nels, we achieve a much larger effective bandwidth denoted
by We = DW , where W is the bandwidth per channel.

2) Online Phase: The CSIs from an unknown location are
formulated into the location fingerprint in the same manner
as described in the offline phase. Assume that the location
fingerprint from the unknown location `′ is given by G[`′], the
resonating strength between location `′ and location ` is com-
puted as γ [G[`],G[`′]]. Define `? = argmax

`=1,2,··· ,L
γ [G[`],G[`′]],

the estimated location ˆ̀′ takes the form

ˆ̀′ =

{
`?, if γ [G[`?],G[`′]] ≥ Γ

0, Otherwise ,
(21)

where Γ is a tunable threshold. Notice that, in case of
γ [G[`?],G[`′]] < Γ, the proposed IPS fails to localize the
device, and the algorithm returns 0 to imply an unknown
location.

In Fig. 4, we show an example of location fingerprints
generated at two different locations in different colors. For
each location, we formulate 5 location fingerprints. As we
can see, the differences among the location fingerprints at
the same location are minor, while the differences of location
fingerprints between the two different locations are much more
pronounced.

IV. EXPERIMENT RESULTS

A. Experiment Settings

Fig. 5 shows the setups of the experiments with details given
below.

1) Environment: The experiments are conducted in a typi-
cal office suite composed by a large and a small office room
in a multi-storey building. The two office rooms are blocked
by a wall. In addition to the two large desks, the indoor space
is filled with other furniture including chairs and computers,
which are not shown in Fig. 5 for brevity.
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Fig. 4. A snapshot of location fingerprint after bandwidth concatenation
generated at two different locations.
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Fig. 5. Experiment settings.

2) Devices: Two Universal Software Radio Peripherals
(USRPs) [29] are deployed as the WiFi transmitter and receiver
respectively. For both devices, the bandwidth of each channel
is configured as W = 10 MHz. The USRP transmitter sends
WiFi signals compatible with 802.11a/g/p, while the USRP
receiver performs timing and frequency synchronization, chan-
nel estimation, equalization, and data frame decoding. CSIs
with correctly decoded data frames are recorded. The two
USRPs perform frequency hopping to the next channel simul-
taneously after a sufficient number of CSIs are obtained on
the current channel.

3) Details of Measurement: The WiFi transmitter is placed
on a rectangular measurement structure in the small room. The
WiFi receiver is placed on the table of the larger room.

The stepsize of the frequency hopping is configured as W =
10 MHz. We measure the frequency band from 4.9 to 5.9 GHz.
The total number of channels D equals 100, and the effective
bandwidth We is thus 1 GHz.

CSIs from L = 75 different locations are measured on the
structure within an area of 70cm×20cm. The measurement
resolution is 5cm, i.e., the distance between two adjacent
locations is 5cm. For each of the 75 locations, we formulate
M = 5 location fingerprints.

B. Metrics for Performance Evaluation

We consider the CSIs collected in the experiment as input
to the fingerprint generation procedure in the online phase,
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Fig. 6. Resonating strength matrix under different We.
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Fig. 7. Histogram of diagonal and off-diagonal entries under different We.
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the resonating strength matrix under different We.

and store all CSIs into the fingerprint database. For evalu-
ation purpose, we assume that the same CSIs are obtained
in the offline phase. Denote the m-th location fingerprint
formulated at location ` as Gm[`], we calculate the resonating
strength matrix R with the (i, j)-th entry of R given by
γ[Gm[`],Gn[`′]], where m = Mod(i,M)+1, ` = i−m−1

M +1,
n = Mod(j,M) + 1, and `′ = j−n−1

M + 1. Here, Mod is the
modulus operator. Notice that, [R]i,j = 1 if i = j. Here, i is
termed as the training index, while j is termed as the testing
index.

We define the entries of R calculated from CSIs obtained
at the same locations as the diagonal entries, while those
calculated using CSIs obtained from different locations as
the off-diagonal entries. We demonstrate the histograms and
cumulative density functions for the diagonal and off-diagonal
entries.
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Based on R, we evaluate the localization performances
using the metrics of the true positive rate, denoted as PTP,
and the false positive rate, denoted as PFP. PTP is defined
as the probability that the IPS localizes the device to its
correct location, while PFP captures the probability that the
IPS localizes the device to a wrong location, or fails to localize
the device.

In the performance evaluation, the CSI sifting parameter τ
is set as 0.8.

C. Performance Evaluation

Resonating Strength Matrix under Different We

Fig. 6 demonstrates R with We ∈ [10, 40, 120, 1000] MHz.
We observe that when We = 10 MHz, there exists many large
off-diagonal entries in R, indicating severe ambiguities among
different locations. When the total bandwidth We increases,
the ambiguities among different locations are significantly

eliminated, while the resonating strengths within the same
location are almost unchanged.
Distribution of Diagonal and Off-diagonal Entries under
Different We

Fig. 7 visualizes the distribution of the diagonal and off-
diagonal entries of R with different We ∈ [10, 40, 120, 1000]
MHz using histograms. Statistics of the diagonal and off-
diagonal entries are shown as well. As we can see, the resonat-
ing strengths at the same location are identical with different
We, implying high stationarity of the proposed IPS. On the
other hand, the off-diagonal entries are more suppressed and
approaches a Gaussian-like distribution when We increases.
We also observe an enlarged gap between the diagonal and
off-diagonal entries when We increases, indicating a better
separability among different locations. The increase of We also
reduces the variations of diagonal and off-diagonal entries,
as shown by the decreasing standard deviations. Moreover, a
large We removes the outliers in the diagonal entries: when
We = 10 MHz, the minimum value of diagonal entries is
0.197, while the minimum value increases to 0.944 when
We = 1000 MHz. Thus, a large We improves the robustness
of the IPS against outliers.
Cumulative Density Functions of Diagonal and Off-
diagonal Entries under Different We

In Fig. 8, we demonstrate the cumulative density func-
tions of diagonal and off-diagonal entries with We ∈
[10, 20, 40, 80, 120, 300, 500, 1000] MHz. As can be seen from
the figure, a large We reduces the spread of both the diagonal
and off-diagonal entries, which agrees with the results shown
in Fig. 7.
Mean and Standard Deviation Performances under Differ-
ent We

Fig. 9 depicts the impact of We on the mean and standard
deviation performances for both diagonal and off-diagonal
entries. The upper and lower bars indicate the ±σ bounds
with respect to the average, where σ stands for the standard
deviation. We conclude that: a large We improves the distinc-
tion among different locations, but also reduces the variation
of resonating strengths at the same locations as well as among
different locations. In other words, a large We makes the IPS
performance more stable and predictable.
Threshold Γ Settings under Different We

Fig. 10 depicts the smallest threshold Γ under We =
[20, 60, 100, · · · , 1000] MHz to achieve (i) PTP = 100% and
PFP = 0% (ii) PTP ≥ 95% and PFP ≤ 5%. We observe a
decreasing in Γ when We is larger, which can be justified by
the fact that the gap between the diagonal and off-diagonal
entries enlarges when We becomes larger. When We = 20
MHz, the IPS fails to achieve PTP = 100% and PFP = 0%.
Fig. 10 also implies that we can achieve a perfect 5cm
localization if Γ is chosen appropriately.

D. Discussion of Experiment Results

Based on the experiment results, we conclude that a large
We is imperative for the robustness, stability, and performance
of the proposed IPS. By formulating the location fingerprint
that concatenates multiple channels, the proposed IPS achieves
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Fig. 11. TR resonating strength near the intended location with a measurement
resolution of 0.5cm.

a perfect centimeter localization accuracy in a NLOS environ-
ment with one pair of single-antenna WiFi devices.

Notice that the localization accuracy is limited by the
5cm resolution of the measurement structure. In an additional
experiment, we refine the measurement resolution to 0.5cm.
The TR resonating strengths near the intended location is
shown in Fig. 11 with We = 125 MHz, which demonstrate
that the localization accuracy can reach 1 ∼ 2cm in an NLOS
environment.

V. CONCLUSION

In this paper, we present a WiFi-based IPS that exploits
the frequency diversity to achieve centimeter accuracy for
indoor localization. The proposed IPS fully harnesses the
frequency diversity by CSI measurements on multiple channels
via frequency hopping. Impacts of synchronization errors and
interference are mitigated by CSI sanitization, sifting, and
averaging. The averaged CSIs of different channels are then
concatenated together into location fingerprints to augment
the effective bandwidth. The location fingerprints are stored
into a database in the offline phase, and are used to calculate
the TR resonating strength in the online phase. Finally, the
proposed IPS determines the location based on the resonating
strengths. Extensive experiment results of measurements on a
1 GHz frequency band demonstrate the centimeter localization
accuracy of the proposed IPS in a typical office environment
with a large effective bandwidth.
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