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Introduction

« Obtaining aligned spectral feature-pairs in non-parallel VC.

= [terative combination of a Nearest Neighbor search step and a
Conversion step Alignment (INCA) [1].

« Limitation: Euclidean distance may not correlate well with the
perceptual distance |2].

= Propose to learn distance metric: Large Margin Nearest Neigh-
bor (LMNN) technique.

« Learned metric: for finding the Nearest Neighbor (NN) pairs
in INCA.

= Subjective and objective evaluation of VC systems.

Motivation for Metric Learning

« INCA Algorithm: Iteratively repeat three steps, namely,
Initialization, Nearest Neighbor Search Step and Transforma-
tion Step until the convergence.

« Lower Phonetic Accuracy (PA).

= t-stochastic neighbor embedding (t-SNE) visualization of
acoustic space.
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Figure 1: Acoustic features space visualization in 2-D using t-SNE for different speech sound
classes, such as (a) vowel, (b) stop, (c) nasal, and (d) fricative.

» Same phoneme uttered by the two speakers does not lie in the
neighborhood in Kuclidean space.

= Acoustic space # Euclidean Space.

= Motivation for defining new metric.
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Metric Learning

« Learning: distance function for a particular task.
« Metric: d : X x X — R should satisty following four conditions

(24, 2;) > 0 (non-negativity),
- d(zj,vj) = 0 & x; = x; (identity of indiscernible),
- d(wj, xj) = d(x;,x;) (symmetry),
- d(g,z;) < d(x;, xp) + d(2r, 75), where Va;, 2 2, € X (triangle
inequality).
« In general, a distance metric is defined as [2]:

da(z,y) = (x —y)" Alx — y). (1)
= A must be positive-semidefinite (PSD).
-If Ais PSD, A= G'G — du(z,y) = ||Gx — Gyll5.
« Hence, Metric Learning = Learning of global linear transfor-
madtion.

« Goal: Metric should give minimum squared distance for the
pairs (x;,z;) € S.
« The objective function [2|:

argmin =y ||z — zj||%, (2)
A (zi,x;)€S
subjectto Y ||z — 4|3 > 1, A= 0. (3)
(zi,x;)€D

« where S and D are set of similar and dissimilar pairs.

- Large Margin Nearest Neighbor (LMNN) [3]:
argmin Yy da(x, x;)
A0 (4,7)€S

+ A\ Z [1 + dA<CE7;, ZIZ’j) — dA(ZUz', CEk)],
(2,5,k)ER

(4)

- where R: set of all triplets (¢, 7, k) such that x; and x; are the
target neighbors and x;. is the impostor.

Local
Neighborhood

) o .I:j-nargljl *«,w./ \..‘N"“‘-’"-

~ margin’.

9 Class o
4 .’70‘;‘; A Class?2

<. LT o Target | €=

o push
Impostors-.... " .- neighbors Impostors neighbors
@ ®

Figure 2: Schematic representation of LMNN technique (a) before and (b) after
applying the LMNN technique.

Experimental Results

« TIMIT database for learning metric.
« CMU-ARCTIC database for VC system developments.
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Figure 3: Schematic representation of (a) baseline, (b) proposed system A, and (c) proposed
system C. Proposed system B is not shown here, since it applies the baseline technique to the
transformed features obtained via the LM, and hence, similar to (a). EUCL: Euclidean metric,
LM: Learned metric.

Analysis of Phonetic Accuracy

= Propose technique C is performing consistently better (with
on an average 7.93 % relative improvement in PA) than the

INCA..
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Figure 4: PA of different initialization techniques for non-parallel VC systems.
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Evaluations

= Subjective Evaluation: 16 subjects (4 females and 11 males.

Table 1: MQOS analysis for the naturalness of converted voices. Number in the bracket indicates

a margin of error corresponding to the 95 % confidence intervals for VC systems

M-M | M-F | F-M | F-F
3.06 241 | 2.66 3.5
(0.27) | (0.29) |(0.28) | (0.26)
3.31 | 2.81 | 253 3.5

(0.29) | (0.22) | (0.21) | (0.25)

Baseline

Proposed System C

= Objective Evaluation: Mel Cepstral Distortion (MCD)

Table 2: MCD analysis. Number in bracket indicates the margin of error corresponding to the
95 % confidence intervals

653 | 695 | 802 | 6.06
(0.34) | (1) | (1.29) | (0.93)
6.41 | 6.76 | 7.85 | 6.02
(0.09) | (0.26)  (0.34) | (0.24)

Baseline

Proposed System C

= Pearson Correlation Coefficient (PCC)
« Better phonetic accuracy lead to better MOS.

Table 3: PCC of % PA and MCD with the subjective score
PCC MOS | SS

PA | 096 |0.37
MCD | -0.3 |0.10

Conclusion

» Proposed to exploit metric learning technique for finding NN

in tfrle INCA.

= Proposed to use our learned metric only for the initial iteration
of INCA since the metric is learned for the actual acoustic
features.

= Improvement (in terms of PA) obtained due to proposed system
C is clearly reflected in the MOS scores with the PCC of 0.96.
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