Introduction

- Obtaining aligned spectral feature-pairs in non-parallel VC.
- Iterative combination of a Nearest Neighbor search step and a Conversion step Alignment (INCA) [1].
- Limitation: Euclidean distance may not correlate well with the perceptual distance [2].
- Propose to learn distance metric: Large Margin Nearest Neighbor (LMNN) technique.
- Learned metric: for finding the Nearest Neighbor (NN) pairs in INCA.
- Subjective and objective evaluation of VC systems.

Motivation for Metric Learning

- **INCA Algorithm:** Iteratively repeat three steps, namely, Initialization, Nearest Neighbor Search Step and Transformation Step until the convergence.
- Lower Phonetic Accuracy (PA).
- t-stochastic neighbor embedding (t-SNE) visualization of acoustic space.

Figure 1: Acoustic features space visualization in 2-D using t-SNE for different speech sound classes, such as (a) vowel, (b) stop, (c) nasal, and (d) fricative.

- Same phoneme uttered by the two speakers does not lie in the neighborhood in Euclidean space.
- Acoustic space \neq Euclidean Space.
- Motivation for defining new metric.

Acknowledgements

The authors would like to thank MeitY, Govt. of India and the authorities of DA-IICT, Gandhinagar, India.

We also acknowledge Samsung R&D Institute, Bangalore.

Novel Metric Learning for Non-Parallel Voice Conversion

Nirmesh J. Shah and Hemant A. Patil

Speech Research Lab, Dhirubhai Ambani Institute of Information and Communication Technology (DA-IICT), Gandhinagar, India-382007

Metric Learning

- Learning: distance function for a particular task.
- Metric: $d: X \times X \to \mathbb{R}$ should satisfy following four conditions
- $d(x_i, x_j) \ge 0$ (non-negativity),
- $d(x_i, x_j) = 0 \Leftrightarrow x_i = x_j$ (identity of indiscernible),
- $d(x_i, x_j) = d(x_j, x_i)$ (symmetry),
- $d(x_i, x_j) \leq d(x_i, x_r) + d(x_r, x_j)$, where $\forall x_i, x_i, x_r \in X$ (triangle inequality)
- In general, a distance metric is defined as [2]:

$$d_A(x,y) = (x-y)^T A(x-y).$$
 (1)

- A must be positive-semidefinite (PSD).
- If A is PSD, $A = G^T G \to d_A(x, y) = ||Gx Gy||_2^2$.
- Hence, Metric Learning = Learning of global linear transformation.
- Goal: Metric should give minimum squared distance for the pairs $(x_i, x_j) \in \mathcal{S}$.
- The objective function [2]:

$$\underset{A}{\operatorname{arg\,min}} \sum_{(x_i, x_j) \in \mathcal{S}} ||x_i - x_j||_A^2, \qquad (2)$$

subject to
$$\sum_{(x_i, x_j) \in \mathcal{D}} ||x_i - x_j||_A^2 \ge 1, \ A \succeq 0.$$
 (3)

- where S and D are set of similar and dissimilar pairs.
- Large Margin Nearest Neighbor (LMNN) [3]:

$$\underset{(i,j,k)\in\mathcal{R}}{\operatorname{arg\,min}} \sum_{\substack{(i,j)\in\mathcal{S}\\(i,j)\in\mathcal{S}}} d_A(x_i, x_j) + \lambda \sum_{(i,j,k)\in\mathcal{R}} [1 + d_A(x_i, x_j) - d_A(x_i, x_k)],$$

$$(4)$$

• where \mathcal{R} : set of all triplets (i, j, k) such that x_i and x_j are the target neighbors and x_k is the impostor.

Figure 2: Schematic representation of LMNN technique (a) before and (b) after applying the LMNN technique.

Presented at International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, May 12-17, 2019.

Figure 3: Schematic representation of (a) baseline, (b) proposed system A, and (c) proposed system C. Proposed system B is not shown here, since it applies the baseline technique to the transformed features obtained via the LM, and hence, similar to (a). EUCL: Euclidean metric, LM: Learned metric.

• Propose technique C is performing consistently better (with on an average 7.93 % relative improvement in PA) than the INCA..

Analysis of Phonetic Accuracy

Figure 4: PA of different initialization techniques for non-parallel VC systems.

- features.

244, 2009.

Evaluations

• Subjective Evaluation: 16 subjects (5 females and 11 males.

Table 1: MOS analysis for the naturalness of converted voices. Number in the bracket indicates a margin of error corresponding to the 95 % confidence intervals for VC systems

	M-M	M-F	F-M	F-F
Baseline	3.06	2.41	2.66	3.5
Dasenne	(0.27)	(0.29)	(0.28)	(0.26)
Dropogod System C	3.31	2.81	2.53	3.5
Proposed System C	(0.29)	(0.22)	(0.21)	(0.25)

• Objective Evaluation: Mel Cepstral Distortion (MCD)

Table 2: MCD analysis. Number in bracket indicates the margin of error corresponding to the 95 % confidence intervals

	M-M	M-F	F-M	\mathbf{F} - \mathbf{F}
Dagalina	6.53	6.95	8.02	6.06
Baseline	(0.34)	(1)	(1.29)	(0.93)
Proposed System C	6.41	6.76	7.85	6.02
Proposed System C	(0.09)	(0.26)	(0.34)	(0.24)

• Pearson Correlation Coefficient (PCC)

• Better phonetic accuracy lead to better MOS.

Table 3: PCC of % PA and MCD with the subjective score

\mathbf{PCC}	MOS	\mathbf{SS}
\mathbf{PA}	0.96	0.37
MCD	-0.3	0.10

Conclusion

• Proposed to exploit metric learning technique for finding NN in the INCA.

• Proposed to use our learned metric only for the initial iteration of INCA since the metric is learned for the actual acoustic

• Improvement (in terms of PA) obtained due to proposed system C is clearly reflected in the MOS scores with the PCC of 0.96.

Selected References

[1] D. Erro et al., "INCA algorithm for training voice conversion systems from nonparallel corpora," IEEE Trans. on Audio, Speech and Lang. Process., vol. 18, no. 5, pp. 944–953,

[2] Eric P Xing et al., "Distance metric learning with application to clustering with sideinformation," in NIPS, Vancouver, Canada, 2002, vol. 15, pp. 12–20.

[3] Kilian Q Weinberger and Lawrence K. Saul, "Distance metric learning for large margin nearest neighbor classification," Journal of Machine Learning Research, vol. 10, pp. 207-