I. Context & Contribution

- MPEG Intra Coding generates dependencies between Coding Units (CU): Closed-Loop prediction and CABAC
- Dual Joint Rate-Distortion Optimization (Dual-JRDO) is an exhaustive search for prediction parameters which minimizes a cost function affecting two neighbor CUs
- Contribution: A low complexity version is proposed in order to estimate opportunities for real-time encoding

II. Dual-JRDO Model

- **Notations**
 - Coding parameters: \(\tilde{p} \)
 - Index of CU: \(i \)
 - Distortion \(D \) and Rate \(R \)
 - R-D Cost Function: \(J(\tilde{p}) \)

- **Dual-JRDO equation**
 - Exhaustive optimization of CUs 2 by 2 (dotted areas)
 - Parameter to optimize \(\tilde{p} \) is the prediction mode
 \[
 \{ p_i^*, p_{i+1}^* \} = \arg \min_{\{ p_i, p_{i+1} \}} \left(J(p_i) + J_{i+1}(p_i, p_{i+1}) \right)
 \]

III. Acceleration Methods

1. Adapting to Spatial Activity

- **Down-sample** 16x16 CUs into 4x4 CUs
 - Pixel real position: \(m, n \)
 - Pixel down-sampled position: \(p, q \)
 - Pixel's luminance: \(l \)
 \[
 l(p, q) = \frac{1}{16} \sum_{m=1}^{4} \sum_{n=1}^{4} l(p/4 + m, q/4 + n)
 \]
- **Compute the spatial activity**
 - Activity of CU \(i \) to \(g_i \)
 \[
 g_i = \frac{1}{16} \sum_{p=1}^{4} \sum_{q=1}^{4} \min \left\{ |l_i(p, q) - l_i(p-1, q)|, |l_i(p, q) - l_i(p, q-1)| \right\}
 \]
 - If \(g_i \) lower than a threshold \(Th \)
 - Do not apply Dual-JRDO
- **Th is dependent of quantizer \(QP \)**
 \(Th(QP) = \alpha + e^{\beta QP} \)

2. Short-listing of the depending CU

- **Observations**
 - Dual-JRDO sequentially optimized two prediction modes \(\{ p_i, p_{i+1} \} \)
 - During \(p_{i+1} \) optimization, \(p_i \) is fixed
 - The second mode analysis is an independent optimization
- Any fast solution which reduce the number of modes can be applied
 - We choose one of the most efficient: Rough Mode Decision (RMD)

- **RMD**
 - Estimate the Most Probable Modes (MPMs)
 - Estimate the modes with lowest SATD score
 - Create a shortlist based on this two sets
 - Apply RDO only on this shortlist

3. Residual Analysis based Clustering

- **Focusing on Distortion dependency**
 - Identical residue leads to identical reconstructed CU
 - If two modes results into the same decoded CU, the next CUs are impacted the same manner

 \[
 J_i(p_i) + J_{i+1}(p_i, p_{i+1})
 \]

 Solution based on modes clustering

 I. During RMD process for \(p_i \)
 - Cluster all modes based on their residue
 II. If \(p_i \) is the first analyzed mode of its cluster
 - Consider all possible modes for \(p_{i+1} \)
 III. Otherwise
 - Consider \(p_{i+1}^* \) attached to this cluster
 - Consider the new MPMs if it applies

IV. Performances

- **Test environment**
 - HM16.12 Anchor
 - RDO configuration
 - Common Test Conditions: All-Intra
 - PSNR based Bjontegaard computation
 - 5 QPs (22,27,32,37,42)

- **Configurations of Dual-JRDO**
 - \(C_i \): No acceleration
 - \(C_j \): Adapting to spatial activity
 - \(C_k \): Short-listing of \(p_i \)
 - \(C_l \): Residue clustering of \(p_i \)
 - \(C_m \): All accelerations combined

- **Average BD-BR**

<table>
<thead>
<tr>
<th>Class</th>
<th>(C_2)</th>
<th>(C_3)</th>
<th>(C_4)</th>
<th>(C_5)</th>
<th>(C_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A</td>
<td>-0.45%</td>
<td>-0.42%</td>
<td>-0.38%</td>
<td>-0.46%</td>
<td>-0.35%</td>
</tr>
<tr>
<td>Class B</td>
<td>-0.61%</td>
<td>-0.54%</td>
<td>-0.47%</td>
<td>-0.61%</td>
<td>-0.42%</td>
</tr>
<tr>
<td>Class C</td>
<td>-0.63%</td>
<td>-0.59%</td>
<td>-0.46%</td>
<td>-0.64%</td>
<td>-0.44%</td>
</tr>
<tr>
<td>Class D</td>
<td>-0.64%</td>
<td>-0.58%</td>
<td>-0.52%</td>
<td>-0.64%</td>
<td>-0.47%</td>
</tr>
<tr>
<td>Class E</td>
<td>-0.87%</td>
<td>-0.76%</td>
<td>-0.67%</td>
<td>-0.88%</td>
<td>-0.60%</td>
</tr>
<tr>
<td>All</td>
<td>-0.63%</td>
<td>-0.57%</td>
<td>-0.49%</td>
<td>-0.63%</td>
<td>-0.48%</td>
</tr>
</tbody>
</table>

 - **Best Sequence**
 - -1.12%
 - -1.01%
 - -0.87%
 - -1.11%
 - -0.82%

 - **Worst Sequence**
 - -0.19%
 - -0.21%
 - -0.20%
 - -0.20%
 - -0.20%

- **Complexity (%)**

<table>
<thead>
<tr>
<th>Class</th>
<th>(C_2)</th>
<th>(C_3)</th>
<th>(C_4)</th>
<th>(C_5)</th>
<th>(C_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A</td>
<td>113%</td>
<td>411%</td>
<td>199%</td>
<td>699%</td>
<td>133%</td>
</tr>
<tr>
<td>Class B</td>
<td>1025%</td>
<td>540%</td>
<td>192%</td>
<td>702%</td>
<td>156%</td>
</tr>
<tr>
<td>Class C</td>
<td>945%</td>
<td>565%</td>
<td>197%</td>
<td>703%</td>
<td>160%</td>
</tr>
<tr>
<td>Class E</td>
<td>1091%</td>
<td>336%</td>
<td>199%</td>
<td>592%</td>
<td>116%</td>
</tr>
<tr>
<td>Class F</td>
<td>1099%</td>
<td>401%</td>
<td>193%</td>
<td>607%</td>
<td>124%</td>
</tr>
<tr>
<td>All</td>
<td>1062%</td>
<td>454%</td>
<td>198%</td>
<td>666%</td>
<td>138%</td>
</tr>
</tbody>
</table>

 - **Best Sequence**
 - 920%
 - 198%
 - 185%
 - 467%
 - 74%

 - **Worst Sequence**
 - 1266%
 - 662%
 - 212%
 - 735%
 - 178%

V. Conclusion

- **Observations**
 - Dual-JRDO is most effective on textured areas
 - Methods reducing the number of modes to test (as RMD) are efficient when extended to dependent CUs
 - Many predictions lead to same residual data and create redundant computations in dependent schemes

- **Conclusion**
 - Dual-JRDO can be highly speed up and be 5x faster
 - Even faster implementation can bring constant BD-impvement (-0.45%)

- **Future Work**
 - Use Dual-JRDO to improve other coding parameters: Quantization, Transform, Filters, ...