Monophone-based Background Modeling for two-stage on-device Wake Word Detection

Minhua Wu, Sankaran Panchapagesan, Ming Sun, Jiacheng Gu, Ryan Thomas, Shiv Naga Prasad Vitaladevuni, Bjorn Hoffmeister, Arindam Mandal

wuminhua@amazon.com, panchi@google.com, mingsun@amazon.com

Goal: To improve the accuracy of the wake word detector on the Amazon device

Focus of this work: Incorporate monophone-based units to model the non-keyword background

Baseline Two-stage Wake Word System

Figure 1: The two-stage wake word detector

1st Stage DNN-HMM Decoder

Figure 2: A simplified 1st stage HMM decoding graph for the wake word "Alexa"

- Foreground HMM: wake word phone states
- Background HMM: speech and non-speech states loop
- Acoustic Model: Deep Neural Network (DNN)
- > Decoder: Viterbi decoding on the graph
- Wake Word Hypothesized: When difference in foreground and background log likelihoods exceeds a threshold
- > 1st stage DET curve: Tune weight on arcs and states

2nd Stage Classifier

- Second Stage Feature Vector
- Obtained from 1st stage wake word hypothesis
- \circ Captures info from the whole candidate segment (e.g. segment duration, likelihood etc.)
- Captures info related to each phone segment

(e.g. phone duration, confidence scores etc.)

> Use a small feed-forward Neural Network (NN) for experiments

New Wake Word System Using Monophone-based **Background Modeling**

New 1st Stage DNN-HMM Decoder

- New Background HMM:
- Expand speech, non-speech events to various monophones
- Becomes a phone-level unigram FST
- New Acoustic Model: background targets expanded

Figure 3: A simplified 1st stage monophone-based background HMM. 3-state HMM topology is actually used

New Feature Engineering for 2nd Stage Classifier

- Baseline second stage features are still valid
- > Extra Features: new scores measuring the degree of match between each candidate's wake word phone segment p and every background monophone q.

 $p \in$ wake word phones: { $SIL_{Preceding}, AX_{BAlexa}, L_{Alexa}, EH_{Alexa}, K_{Alexa}, S_{Alexa}, AX_{EAlexa}$ } $q \in background monophones: \{SIL, SPN, NSN, PAU, AA, AE, ...Y, ZH, Z\}$

- $MatchScore_{p,q} = \frac{1}{Dur_p} \sum_{t=T_n}^{T_{p+1}-1} max\{log(P(X_t|Q_q^L, \theta_{BG})), log(P(X_t|Q_q^C, \theta_{BG})), log(P(X_t|Q_q^R, \theta_{BG}))\}$
 - \circ p: A wake word phone (T_p: start frame of this phone in the candidate segment X)
 - \circ Q^L_q, Q^C_q, Q^R_q: The three states for each monophone q.
 - Obtain match score for each candidate's wake word phone p with respect to every background monophone q
 - Distinguish better between real wake words and confusable segments among first stage candidates

- Several thousand hours of real far-field data for training
- > Approximately 30,000 wake word instances in dev/test set > A feed-forward DNN acoustic model at the first stage
- > Features: Log Mel-Filter-Bank Energies (LFBE) (20 frames for left context and 10 frames for right context)
- The second stage feature vector is of dimension 67
- > A small feedforward NN as the second stage classifier

Changes for Monophone-based System Setup

- Use 44 monophones in the background model Background HMM changes to be a phone-level unigram FST

End-to-end Evaluation

Figure 4: Extracting extra information from first stage wake word hypothesis using monophone based units for background

Experiment Results

Baseline Setup

- Wake word task (50 targets) multi-task trained with LVCSR targets [1]
- The GPU-based distributed DNN trainer utilized [2]

- DNN output targets for the wake word task is expanded
- The second stage feature vector is of dimension 375 (67+7x44)

1st Stage HMM Tuning

- Performance: The two systems are almost the same at this stage > Operating points picked for building 2nd stage classifier:
- recall at around 0.02 for both systems

SP/ SP/ Мо

Effectiveness of the 2nd stage

amazon echo

Table 1: Summary of different wake word systesms

	2 nd NN: 2x64		
	FRR (Fix FAR=2y)	FAR (Fix FRR=0.04)	# of Params
SP/NSP(4×896)	0.051	3.71y	3.02M
SP/NSP(4×1024)	0.050	3.43y	3.84M
Monophone (4x896)	0.043	2.35y	3.15M
Monophone (4x1024)	0.042	2.31y	3.99M

Figure 6: Comparison of the performance with and without 2nd stage classifier (2×64 NN); DET curves on test set; Axis of the false alarm rate is obscured due to the sensitive nature of this information

Conclusion

Propose a new way to model the non-keyword part.

- Expand the speech/non-speech events to more specific monophone-based units at the first stage.
- Extract extra match scores for final detection
- > The new system reduces FAR by **37%** when the FRR level is maintained.
- > On the other hand, it reduces FRR by about **16%** if FAR level is fixed.
- > The second stage itself is able to reduce FAR by 67% relatively on top of 1st stage hypothesis.

References

[1] Sankaran Panchapagesan, Ming Sun, Aparna Khare, Spyros Matsoukas, Arindam Mandal, Bjorn Hoffmeister, and Shiv Vitaladevuni. Multi-task learning and weighted cross-entropy for dnn-based key- word spotting. Interspeech 2016, pages 760–764, 2016.

[2] Nikko Strom. Scalable distributed dnn training using commodity gpu cloud computing. In *INTER- SPEECH*, volume 7, page 10, 2015.